Abstract
The use of the cord blood pH estimation of DCDA twin babies at birth is not a predictor of take home baby rate.

Introduction
The clinicians have for some times thought about the link between umbilical artery pH and adverse fetal outcomes. This stems from the fact that, if a baby is deprived of adequate oxygen, the pH of blood in the umbilical cord drops. Hypoxia is the most common cause of brain damage and premature or very small babies are at most risk.

But so far, the evidence for such a link has been inconsistent. Current guidelines also question whether umbilical artery pH can accurately predict neonatal morbidity and mortality specially in case of DCDA twin babies.

Abstract Method
This retrospective five year study used the data collected from patient notes and delivery summaries from CMIS software. This included all uncomplicated DCDA twin pregnancies; the gestation of pregnancies included was from 24 completed weeks to 39 weeks and onwards. The study included all deliveries of DCDA twins at Northwick Park Hospital over a 5 year period independent of mode of delivery. The pregnancies complicated by Maternal Medical problems and fetal structural and chromosomal abnormalities were excluded from the study. The umbilical artery and venous cord blood samples were collected at the time of delivery in a heparinised syringe and analysed in blood gas analyser.

Abstract result
The majority of umbilical cord blood samples analysed showed the pH value of 7.2 or above; our target value for fetal wellbeing and predictor of take home baby rate, despite this the neonatal morbidity was variable.

Abstract conclusion
The umbilical cord blood pH value of 7.2 or above considered as a good predictor of fetal wellbeing at birth did not determine the ultimate take home baby rate in our population cohort.

<table>
<thead>
<tr>
<th>Gestation</th>
<th>Tot. Deliveries</th>
<th>Birth Weight</th>
<th>Average Arterial pH</th>
<th>No < pH 7.2</th>
<th>SD</th>
<th>95% CI</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-28</td>
<td>32</td>
<td>275-1700</td>
<td>7.28</td>
<td>2</td>
<td>0.071</td>
<td>0.036</td>
<td>15</td>
</tr>
<tr>
<td>29-34</td>
<td>132</td>
<td>480-2700</td>
<td>7.27</td>
<td>7</td>
<td>0.067</td>
<td>0.014</td>
<td>84</td>
</tr>
<tr>
<td>35-37</td>
<td>275</td>
<td>1140-3600</td>
<td>7.27</td>
<td>17</td>
<td>0.061</td>
<td>0.009</td>
<td>189</td>
</tr>
<tr>
<td>38+</td>
<td>109</td>
<td>1650-3700</td>
<td>7.23</td>
<td>18</td>
<td>0.039</td>
<td>0.02</td>
<td>75</td>
</tr>
</tbody>
</table>

Reference: