Targeted Sequencing of Maternal Plasma for Haplotype-based Noninvasive Prenatal Testing of Spinal Muscular Atrophy Min Chen^{1,#}, Sen Lu^{2#}, Chao Chen², Kai Luo¹, Yuan Yuan², Yaoshen Wang², Zhengfei Lai¹, Shiquan Li², Ya Gao², Fang Chen², Asan², Dunjin Chen^{1, *}

¹Department of Prenatal Diagnosis and Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China ² Tianjin Translational Genomics Center, BGI-Tianjin, BGI-Shenzhen, Tianjin, China edchen99@gmail.com

Objective

•To investigate the feasibility study of haplotype-based noninvasive prenatal testing (NIPT) of Spinal Muscular Atrophy

Table 1. Clinical information and molecular diagnosis

C	Case	Sample	Clinical	MA	GW	MLPA	Pregnancy	
Ľ		ID	symptoms	мл		Diagnosis	Outcome	

(SMA).

Methods

• Five families with pregnancy• and a child affected by spinal muscular atrophy (SMA) were recruited between November 2014 and March 2015. Deletions of exons 7 and/or 8 in the SMN1 gene were identified by multiplex ligation dependent probe amplification (MLPA). Clinical information for the five couples and their proband child are shown in Table 1.For target capture sequencing of genomic and maternal plasma DNA, a custom-designed 221.43-kilobase (kb) NimbleGen EZ array was used, containing a 28-kb coding region of the SMN1 AQ10 gene and 2011 SNPs from 3 megabases (Mb) upstream to 3 Mb downstream of the SMN1 gene.

F01	mother	No obvious abnormality	35Y		Hete D.EX7	Natural labor, Healthy female fetus
	father	No obvious abnormality	43Y		Hete. D.EX7	
	proband	Туре ПІ	2Y		Homo D.EX7	
	maternal	Singleton live pregnancy,	12W+			
	plasma	ultrasonic normal		6D	Normal	
	cv	Singleton live pregnancy,		12W+	Normal	
	· ·	ultrasonic normal		6D		
	mother	No obvious abnormality	23Y		Hete. D.EX7-8	Natural labor,
					~~~~	Healthy male fetus
	father	No obvious abnormality	27Y		Hete. D.EX7-8	
F02	proband	Type II	8M		Homo D EX7-8	
	matemal	Singleton live pregnancy,		12W+	Hete. D.EX7-8	
	plasma	ultrasonic normal		5D	~~~~	
	AF	Singleton live pregnancy,		12W+	Hete. D.EX7-8	
		ultrasonic normal		5D		
	mother	No obvious abnormality	32Y		Hete. D.EX7-8	Cesarean section
						Healthy male fetus
	father	No obvious abnormality	-		Hete. D.EX7-8	
F03	proband	Type II	5Y		Homo D.EX7-8	
	maternal	Singleton live pregnancy,		13W+	Hete. D.EX7-8	
	plasma	ultrasonic normal		1D	~~~~	
	cv	Singleton live pregnancy,		13W+		
		ultrasonic normal		1D		
	mother	No obvious abnormality	32Y		Hete. D.EX7-8	Termination of Deemonstry
	father	No obvious abnormality			Hete. D.EX7-8	Pregnancy
					~~~~	
F04	proband	Type III	4Y		Homo D.EX7-8	
	maternal	Singleton live pregnancy,		13W+	Homo D.EX7-8	
	plasma	ultrasonic normal		5D		
	AF	Singleton live pregnancy, ultrasonic normal		13W+ 6D	Homo D.EX7-8	
		ultrasonic normai		00		Cesarean section
TOF	mother	No obvious abnormality	26Y		Hete. D.EX7-8	Healthy male fetus
F05	father	No obvious abnormality			Hete. D.EX7-8	
		· · · ·	1.77		~~~~	
	proband	Type III	1Y		Homo D.EX7-8	
	matemal	Singleton live pregnancy,		12W	Normal	
	plasma	ultrasonic normal		1077		
	AF	Singleton live pregnancy,		12W+	Normal	
		ultrasonic normal		2D		

Results

• Parental haplotypes across the SMN1 gene and flanking region were constructed based on the genotyping information from the mother, father and proband child (Figure 1). The number of informative SNPs on the 221.43-kb target region used for fetal haplotype construction in each family ranged from 95 to 1186. According to parental haplotypes and maternal plasma DNA sequencing data, the PAHP-assisted method identified two normal fetuses (Cases 1 and 5), two carriers (Cases 2 and 3) and one affected fetus (Case 4) (Table 1 and Figure S1). The results were consistent with the standard prenatal diagnosis method using MLPA of AF or CV samples, with no false-positive or -negative result.

• Table S1 may be found in the online version of this article

Conclusions

• NIPT strategy for SMA through targeted sequencing of

maternal plasma DNA is accurate and the haplotype-based method should be evaluated systematically in a larger population and may serve as a robust and accurate NIPT for SMA.

Acknowledgements

Guangzhou Science and Technology Program (No.2014 234)
Guangdong Science and Technology Program (No.2013B02200005)

SMN1 gene

Fathe	Father		ather		Mother		Proband			Father			Mother			Proband	
					_			1	Hap0	Hapl		Hapl	Hap0		F-Hap0	M-Hap0	
Т	Т		G	Т		Т	G		Т	Т		Т	G		Т	G	
G	G		Т	G		G	G] [G	G		Т	G		G	G	
Т	Т		С	Т		Т	С	1 [Т	Т		Т	С		Т	С	
A	G		Α	Α		Α	A G T T C	1 [Α	G	1	Α	Α		Α	Α	
A	G	+[G	G	+	G		↔	G	A	1+	G	G	+	G	G	
C	Т	Ī	Т	Т		Т		1	Т	С	1	Т	Т		Т	Т	
Т	С	Ī	Т	Т		Т		1 1	Т	С	1	Т	Т		Т	Т	
Т	Т		С	G		Т		1 1	Т	Т	1	G	С		Т	С	
Т	Т		Т	С	ТТ	1 1	Т	Т	1	С	Т		Т	Т			
					,												
	↓																
		Mo	ther		F	М		F	М		М	F		М	F		
		Hapl Hap0		Hapl Hapl		Hapl	1 Hap0		Hapl	1 Hap0		Hap0	Hap0				
	ĺ	Т	G		Т	Т		Т	G] [Т	Т] [G	Т		
	[Т	G		G	Т		G	G	1 [Т	G] [G	G		
	[Т	С		Т	Т		Т	С	1 [Т	Т		С	Т		
	[Α	Α	1	G	Α		G	Α	1 [Α	Α	1 [Α	Α		
	Ī	G	G	1+	Α	G	or	Α	G	or	G	G	or	G	G		
	Ī	Т	Т	1	С	Т	1	С	Т	1 [Т	Т	1	Т	Т		
	l	Т	Т	1	С	Т		С	Т	1 1	Т	Т	1 1	Т	Т		
	l	G	С	1	Т	G		Т	С	1 1	G	Т	1	С	Т		
		С	Т	1	Т	С		Т	Т	1 1	С	Т	1	Т	Т		
	Ľ					Å]	3						D		