Angle of Insertion of the Ductus Venosus Affects Qualitative and Quantitative Flow Across the Foramen Ovale

Katrina Ruedinger, MS1, Ryan Pewowaruk, MS1, Shardha Srinivasan, MD2, Barbara Trampe, RN, RDMS3, Timothy Heiser, RDMS3, Alejandro Roldán-Alzate, PhD1,4,5, J. Igor Iruretagoyena, MD6

Departments of 1Biomedical Engineering, 2Pediatric Cardiology, 3Obstetrics and Gynecology, 4Mechanical Engineering, 5Radiology, 6Maternal and Fetal Medicine; University of Wisconsin, Madison, WI, USA

klruedinger@wisc.edu, irurategoyen@wisc.edu

References

1 Linask KK et al, *Front Physiol*, 2014
2 Ruedinger KL et al, *Circulation*, 2018
3 Rutkowski DR, *Compt Methods Biomech Biomed Eng Imaging*, 2017
4 Zhao K et al, *Anat Rec*, 2015

Purpose

• It is suggested that intracardiac flow patterns play a role in fetal cardiac anomaly development1

• Patient-specific fetal heart models were successfully created from 3D Fetal Echocardiograms2

• Computational Fluid Dynamics (CFD) has been used to study the affect of anatomy on flow patterns3,4

Goal: To analyze how changing the angle of insertion of the ductus venosus (DV) affects the amount of DV flow across the foramen ovale (FO) with CFD

Changing the angle of insertion changed the % of DV flow that went across the FO.

Future Work: Analyze multiple normal hearts to determine a "normal" angle of insertion and hearts with cardiac anomalies to determine any difference in DV angle of insertion and run the simulations again.

<table>
<thead>
<tr>
<th>DV angle</th>
<th>% DV Flow Across FO</th>
</tr>
</thead>
<tbody>
<tr>
<td>30°</td>
<td>54.4%</td>
</tr>
<tr>
<td>60° (actual)</td>
<td>50.4%</td>
</tr>
<tr>
<td>90°</td>
<td>47.8%</td>
</tr>
</tbody>
</table>

CFD Properties: 2mm CFD grid was used with an adaptive meshing algorithm and a passive scalar transport equation was solved. Inflow boundary conditions were set based on literature,5,6

CFD simulations (Converge) were done with 3 different angles of insertion of the Ductus Venosus (DV). 60° was the actual angle of insertion. % of DV flow across FO (yellow arrow) was calculated.