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Abstract—The objective of the current study is to examine
the potential value of using machine learning techniques such
as artificial neural network (ANN) schemes for the non-invasive
estimation, at 11-13 weeks of gestation, the risk for euploidy,
trisomy 21 (T21) and other chromosomal aneuploidies (O.C.A.),
from suitable sonographic, biochemical markers, and other rel-
evant data. A database1 consisted of 51,208 singleton pregnancy
cases while undergoing first trimester screening for aneuploidies
has been used for the building, training and verification of the
proposed method. From all the data collected for each case from
the mother and the fetus, the following nine are considered
by the collaborating obstetricians as the most relevant to the
problem in question: maternal age, previous pregnancy with
T21, fetal crown-rump length, serum free β-hCG in multiples
of the median (MoM), PAPP-A in MoM, nuchal translucency
thickness, nasal bone, tricuspid flow and ductus venosus flow. The
dataset was randomly divided into a training set that was used to
guide the development of various ANN schemes, support vector
machines and k-nearest neighbours models. An evaluation set
used to determine the performance of the developed systems. The
evaluation set, totally unknown to the proposed system contained
16,898 cases of euploidy fetuses, 129 cases of T21 and 76 cases
of O.C.A. The best results were obtained by the ANN system
which identified correctly all T21 cases i.e. 0% false negative
rate (FNR) and 96.1% of euploidies i.e. 3.9% false positive rate
(FPR), meaning that no child would have been born with T21
if only that 3.9% of all pregnancies had been sent for invasive
testing. The aim of this work is to produce a practical tool for the
obstetrician which will ideally provide 0% FNR, and recommend
the minimum possible number of cases for further testing such
as invasive. In conclusion it was demonstrated that ANN schemes
can provide an effective early screening for fetal aneuploidies at a
low FPR with results that compare favorably to those of existing
systems.

I. INTRODUCTION

THE identification of chromosomal abnormalities in the
early stages of pregnancy can be achieved, with high

confidence, by performing an amniocentesis test or a chorionic
villus sampling test (CVS) [1]. These methods however, are
invasive and carry high risk for miscarriage or cause medical
side effects to the pregnant woman.
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A. Invasive Methods

In the work of Tabor and Alfirevic [2], it is reported that
amniocentesis and CVS have a miscarriage rate of 0.5 - 1.0%.
Furthermore, the amniocentesis test should not be performed
prior to the 15 weeks of pregnancy since the miscarriage rate
increases significantly, while there is also increased risk of
developing talipes equinovarus [3].

Therefore, the amniocentesis or the CVS test should not be
performed unless there are serious indications of high risk for
chromosomal aneuploidy in the fetus. It is also emphasized
that both of these methods carry additional costs to the family
which is not a trivial issue.

B. Non-Invasive Methods

There has been an increased interest and need of exploring
non-invasive methods for the prediction of chromosomal ane-
uploidies in the first trimester, or earlier, of pregnancy. In the
literature, several methods that were aiming at a non-invasive
prediction of chromosomal abnormalities had been reported.
These methods can be classified into three main categories,
based on their methodology:

1) First-trimester pre-natal statistical screening: Statistical
methods for appraising the probability of aneuploidy are
properly applied on several markers that are obtained by an
antenatal test. Typically, the markers used are the fetus crown
ramp length (CRL), the fetal nuchal translucency (NT), the
maternal age (MA), the pregnancy-associated plasma protein-
A (PAPP-A), the serum free β-hCG, the ductus venosus flow
(DV), tricuspid valve flow and others [4], [5], [6]. The risk for
aneuploidies increases with maternal age and it is higher in
women with previous affected pregnancies. It also increases
with fetal nuchal translucency thickness and is higher in those
with absence of the fetal nasal bone and with abnormal flow
through the ductus venosus and across the tricuspid valve. The
maternal serum concentration of the placental products free
β-human chorionic gonadotropin and pregnancy associated
plasma protein-A also influence the risk for aneuploidy [4].
Serum PAPP-A is decreased in trisomies 21, 18, 13 and the
Turner syndrome, while serum free β-hCG is increased in T21,
decreased in trisomies 18 and 13 and not altered in the Turner
syndrome.

Most of these methods use posterior probabilities based on
the median and the standard deviation of the markers, or by
using a suitable multivariate statistical approach. Typically, the
models output a probability on the risk of fetus aneuploidy.
In the work of Nicolaides et al. [7], a multivariate likelihood
approach is described for the identification of the T21 in the
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first trimester of pregnancy. A multiplication of the maternal
age-related risk and each likelihood ratio (LR) derived from
the fetal NT and maternal weight-adjusted serum free β-hCG
and PAPP-A outputs the patient-specific risks for aneuploidy.
More on this method can be found in [8].

Traditionally, screening for aneuploidies is done by estimat-
ing the patient-specific risk for each aneuploidy. This is done
by multiplying the a priori risk, by a factor of approximately
1.75 in cases with a previous history of aneuploidy. The
likelihood ratio for each ultrasonographic and biochemical
marker is used to calculate the detection and FPRs by taking
the proportions with risks above a given risk threshold [4].
The likelihood ratios for the categorical variables such as the
absence or presence of nasal bone and the abnormality of
flow in the tricuspid or ductus venosus valves, are ratios of
prevalence of each marker in each type of fetal aneuploidy to
the prevalence in euploidy fetuses. In the case of continuous
variables, such as fetal NT thickness and maternal serum free
β-hCG and PAPP-A, the likelihood ratios are derived from
the overlap of the Gaussian distribution of each marker in
each type of fetal aneuploidy with the respective Gaussian
distribution in euploidy fetuses.

2) Maternal cell-free DNA screening: Schmorl’s experi-
ment with women who died of eclampsia was the first study
to suggest that fetal cells circulate in the mother’s blood [9].
It is estimated that 1 in 1000 to 1 in 10,000,000 nucleated
cells in maternal blood are fetal [10]. The isolation of fetal
DNA from the maternal DNA could give insights for studying
genetic diseases. For the problem under study, the isolation
of the fetus DNA is still extremely hard to achieve, it is
labor intensive and requires highly skilled operators. While
the majority of the studies focused on the identification of
the T21 [11], [12], recently the trisomies 18 and 13 are also
identified. In [13], Papageorgiou et al. claim a very good
prediction (100%) of 26 euploidy and 14 cases of T21 in the
validation set, by determining the DNA methylation ratio of
12 selected differentially methylated regions (DMRs).

Other studies used similar approaches, mainly for T21,
trisomy 18 and trisomy 13 [14], [15], [16]. Palomaki et al.,
[16] report a detection rate of 100% for trisomy 18 and 91.7%
for trisomy 13 with a FPR of 0.28% and 0.97% respectively.
However, the test was done in the late first and early second
trimester of the pregnancy which can be considered relatively
late for abortion. Most importantly, the circulating cell-free
DNA fragments are being presented as differentially methy-
lated markers and not identified under microscope. Then, the
procedure for the prediction of the risk for aneuploidies is done
with simple statistical analysis of the methylated markers.

The above described non-invasive methodologies have their
relative advantages but at the same time have their disad-
vantages. The first methodology suffers in the sense that one
cannot combine and examine simultaneously all the relevant
parameters of the case or visualize them in a multidimensional
space. Visualization of more than three parameters at a time is
extremely difficult and not practical in a medical environment.
Also, parameters which are correlated can lead to unreliable
conclusions. In the second methodology, the parameters used
(called markers) have no relation to the phenotype of the

fetus, such as for instance the CRL or the fetal heart rate
which for the certain problem is important. In the majority
of the published studies the population of their databases
is very small for drawing reliable conclusions for such a
complex problem. For instance in [10], they are dealing with
40 cases (euploidy and T21). Even though this work was
published in Nature Medicine, one can identify two important
limitations of the proposed method which imply lack of
scientific confirmation. For such a complex problem, it is not
convincing whether a perfect prediction of a population of
40 cases is satisfactory for drawing robust conclusions. In
contrast to this database, we studied more than 51000 cases
of pregnant women and validated 16,898 cases of euploidy
fetuses, 129 cases of T21 and 76 cases of O.C.A. Also, there is
no information in [13] whether the results were cross validated.
It is important to present cross validated results such as 10-fold
or leave-one-out cross validation. In this scenario, one can have
a better insight about the generalization ability of the method.
Therefore, it is not explicit if their method will yield similar
results by randomly selecting different training and test sets.
Another serious limitation of the study [10] is the fact that
only euploidy and T21 can be handled; what will the system
predict if the unknown case in question is trisomy 13 or O.C.A.
Furthermore, the whole analysis even though is based on the
existence of free DNA cells of the fetus in the mother’s blood
no such cell is isolated for singling out the pathological gene.
The determination of a pathological existence in the genes is
done statistically and probabilistically.

3) Computational Intelligence: In this study, we report a
computational intelligent approach for the non-invasive esti-
mation of the risk of aneuploidies. This approach involves
the development of a system-predictor which takes as input
a number of parameter values. These values have different
origins and source, and they are collected at certain pre-
specified times during pregnancy. For example during the
first-trimester screening for fetal T21 and for O.C.A., certain
parameter values are recorded which are a combination of
maternal and feto-placental nature [4].

The computational ANNs, which are a specific paradigm
of computational intelligence, had been used as effective
classifiers and predictors for the last 25 years. Indeed, they had
been extensively applied in medical and biological research
and applications [17], [18], [19], [20].

ANNs are essentially mathematical algorithms implemented
in software that learn from data and capture the knowledge
and the internal dynamics that are contained in the data.
Suitably trained models approach the functionality of small
biological neural systems in a very fundamental manner that
mimics human-like behavior. Thus, once they are properly
trained they exhibit computational intelligence in a simplistic
mimicry of the biological intelligence. They constitute a very
simple digitized model of the biological brain and in some
cases can detect complex non-linear relationships between
dependent and independent variables in a dataset which may
be undetectable by a human brain. Indeed, they can execute
certain tasks, especially in classification and recognition that
would be extremely difficult to be done by the traditional and
conventional computing techniques. They can learn from data,
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even in self-organized manners.
In the medical field, ANNs proved to be a powerful method

for medical diagnosis. As an example, Al-Shayea [21] reports
a medical diagnosis system for acute nephritis disease and
heart disease using feed forward ANN. A correct classification
of 99% has been reported. Hayashia and Setiono [22] used
a two level approach combining two ANN systems for the
diagnosis of hepatobiliary disorders. In this study, the database
consisted by 536 samples with nine input features describing
four hepatobiliary disorders: Alcoholic Liver Disease (ALD),
Primary Hepatoma (PH), Liver Cirrhosis (LC) and Cholelithi-
asis (C). Their best ANN models classified 95% of the four
diseases. A chest disease diagnosis system is reported in [23].
The database in this work consisted of chest disease measure-
ments of 357 samples and six classes, namely Tuberculosis,
COPD, Pneumonia, Asthma, Lung Cancer and Normal. All
samples had thirty eight features. The authors report 90.2%
average classification accuracy for all the six classes. Other
studies that used ANN are referenced in [24], [25] and [26].

The objective of our study is to examine the potential value
of ANNs and other computational intelligence techniques in
the prediction of the risk for T21 and O.C.A. from ultrasono-
graphic and biochemical markers at 11-13 weeks of gestation.

In section II, computational intelligence approach and the
proposed method are presented and discussed. Furthermore,
statistical analysis has been applied to the non-binary features.
This analysis is presented including the visualization of the
feature distributions, and the testing of the separability of the
features in pairs. In section III we present our experiments
and results and in section IV we discuss further the results of
the present work and how it is compared with other methods.
Finally, in section V we report our conclusions.

II. METHODS

In this section we present the computational intelligence
approach that has been adopted, the procedure for data col-
lection, the data grouping into cross-validation sets, and two
schemes for aneuploidy risk prediction. We have implemented
models with ANNs, support vector machines (SVM) (kernel
1 and 2) and k-nearest neighbours (k-NN).

A. The artificial neural network diagnostic system

Many different ANN structures had been proposed and
used by researchers in different fields. The most widely used
ANN structure is the fully connected multilayer feed forward
structure (FCMLFF). Mathematically this is represented by
Eq. 1 as:

y
[L]
iL = f

[L]
iL

 nL−1∑
jL−1=1

y
[L−1]
jL−1W

[L]
L−1,L

 (1)

Where y[L]
iL is the output value of each neuron i of layer L

that has a total of nL neurons. Typically, the function has a
squashing form such as the logistic or the hyperbolic tangent.
WL−1,L is the set of weights associating neurons in layer L−1
to neurons in layer L.

In this study, we used fully connected feed-forward ANNs
as described in Eq. 1. The first layer is typically called input
layer and it has as many neurons as the input parameters. The
weights in the ANN represent the intensity of the processes in
the synapses of the biological neural network. In a practical
implementation of ANNs, the initial values of the weights are
typically set to random values.

Once the ANN topology is decided, an effective training
and tuning procedure needs to be implemented, so that the
network will achieve the capability for generalization as a
risk estimator. Many training procedures had been proposed
and are available for implementation. The most widely used
for feed forward networks is the backpropagation algorithm
[27]. In this work, we implemented fully connected feed-
forward neural networks with backpropagation learning. The
justification for selecting this simple network is discussed
further down in the paper. The activation function for the
input layer and the hidden layer was set to logistic. We have
trained and validated a large number of networks by changing
different parameters in the training procedure. The best results
were obtained with the networks built with 20 to 40 neurons
in the hidden layer as will be explained in the results.

B. Database and Parameters Used

The data set used was collected from women having sin-
gleton pregnancies while attending the Fetal Medicine Centre
at Kings’ College Hospital and University College London
Hospital in London, for aneuploidy screening at 11+0 to
13+6 weeks of gestation. The maternal age and the previous
history of the pregnancy, in particular on whether there was a
previous case of T21 were recorded. Also, a transabdominal
ultrasound examination was performed for measurement of the
fetal CRL and the NT thickness, as well as an assessment of
the fetal nasal bone and the flow in the DV and across the
tricuspid valve. These were done by sonographers who had
received the appropriate Fetal Medicine Foundation Certifi-
cates of Competency. The pregnancy was dated according to
the measurement of the fetal CRL [28]. Additionally, maternal
blood was collected and used to measure serum PAPP-A and
serum free β-hCG concentrations through automated machines
that provide reproducible results within 30 min (Delfia Express
System, Perkin Elmer). The measured PAPP-A and serum
free β-hCG were converted into multiples of the median
(MoM). The measured fetal NT was expressed as a difference
from the expected normal mean for the specific CRL [29].
These maternal demographic characteristics, ultrasonographic
measurements and the biochemical results were recorded in a
structured database.

The following nine parameters were used as suitable mark-
ers that could help in establishing the risk for aneuploidies:
maternal age in years, history of previous pregnancy with
T21, fetal CRL in mm, serum free β-hCG in MoM, PAPP-
A in MoM, delta NT in mm, nasal bone (present or absent),
tricuspid flow (regurgitation or normal) and ductus venosus
flow (reversed a-wave or normal).
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C. Statistical Analysis of the Data

In this section we present the results of a statistical analysis
that has been applied to the data. The aim of this analysis
is to discover the significance of separability between pairs
of distributions for each feature, by means of their medians.
That is, to test for the statistical null hypothesis whether data
who belong to same category share equal medians. Moreover,
we have tested the normality of the distribution of each
feature. This was done to create a better understanding of our
data, as well as to avoid using methods that require normal
distributions in the input feature space, such as the Gaussian
Mixture Models and the student’s t-test. The histogram of
each non-binary feature has been computed for all the classes
of our database, namely euploidy, T13, T21, T18, Triploidy
and Turner. The normality of the data was tested with the
Kolmogorov-Smirnov test [30].

In Table I the results of the normality test are shown. In
the first row the names of the five non-binary markers are
shown, while in the first column the names of the classes
(euploidy or aneuploidies). It should have been expected that
the data used in this study will not follow a normal distribution
since the population under study is not normally distributed by
nature, since pregnancy occurs in a certain age-range which is
naturally skew to the right; in addition to this the large database
used in this study contains proportionally much more trisomy
cases than reported statistically. For example T21 occurs 1
in about 800 pregnancies, and thus in our database we should
have had 65 cases instead of 408. Similarly, trisomy 18 occurs
1 in 5,000 pregnancies and thus we should have had 10 instead
of 145 cases, trisomy 13 1 in about 16,000 pregnancies, etc.

The results of the normality test confirm this reality. Another
factor which may contributed to this is the fact that our
database in highly unbalanced, ie. euploities are by far more
than aneuploidies. In large sample sizes, the probability that a
normality test will reject the null hypothesis that the sample
comes from a normal distribution increases due to samples
that depart from normality which are statistically significant.
Furthermore, the population in the classes of T13, Triploidy,
and Turner is relatively small (< 50 ) and therefore the
rejection of the null hypothesis may be because of insufficient
number of samples.

A widely used method to measure the seperability between
two classes for a given feature is the student’s t-test. The
student’s t-test assumes that the testing data follow a normal
distribution and the population of the two classes is equal. The
t-test rejects the null hypothesis at a confidence level of 95%
(p < 0.05) where p is the estimated probability of rejecting
the null hypothesis.

Taking into consideration that a subset of the features does
not follow a normal distribution and the population between
the classes is not equal, the t-test could not be applied.

The significance of the difference between the medians
of every class for the non-binary features was computed by
the paired-difference Wilcoxon Rank Sum method [31]. The
Wilcoxon Rank Sum method is a non-parametric method in
contrast with the widely used t-test method. It has been pro-
posed by Frank Wilcoxon in 1945 and popularized by Sidney

TABLE I: Results from the Kolmogorov-Smirnov test (Nor-
mality test). “MA” stands for maternal age, “N” stands for
normal distribution while “NN” stands for non-normal distri-
butions.

MA CRL PAPP-A β-hCG delta NT

Euploidy NN NN NN NN NN
T13 N N NN N N
T18 N N NN NN N
T21 NN N NN NN NN
Triploidy N N NN NN NN
Turner N N N NN N

TABLE II: The significance of the difference between the
medians of every class computed by the paired-difference
using the Wilcoxon Rank Sum method.

MA CRL PAPP-A β-hCG delta NT

Eupl. -
Triploidy

0.8845
True

<<0.05
False

<<0.05
False

<<0.05
False

0.9909
True

Eupl. -
Turner

0.08 True 0.1377
True

<<0.05
False

0.1824
True

<<0.05
False

T13 -
T18

0.1377
True

0.2817
True

0.0244
False

<<0.05
False

0.0763
True

T13 -
T21

<<0.05
False

<<0.05
False

<<0.05
False

<<0.05
False

0.0643
True

T13 -
Triploidy

0.0437
False

0.2968
True

0.0288
True

0.0505
True

<<0.05
False

T13 -
Turner

<<0.05
False

0.1886
True

<<0.05
False

<<0.05
False

<<0.05
False

T18 -
T21

0.1279
True

<<0.05
False

<<0.05
False

<<0.05
False

<<0.05
False

T18 -
Triploidy

<<0.05
False

0.7859
True

0.0665
True

0.3516
True

<<0.05
False

Tripl. -
Turner

0.3234
True

0.0353
False

<<0.05
False

0.025
False

<<0.05
False

Siegel in 1956 in applications to behavioural sciences. The p-
values of the Wilcoxon Rank Sum method are summarized
in Table II. The pairs for testing the null hypothesis are
shown in the first column in Table II. The word True signifies
rejection of the null hypothesis and False acceptance. The null
hypothesis that the medians of the data being compared have
no statistical significance is rejected with a p-value that is less
than 0.05. The method rejected the null hypothesis for all the
features for the pairs “euploidy & T13”, “euploidy & T18”,
“euploidy & T21, T18 & Turner”, “T21 & Triploidy”, and
“T21 & Turner” and therefore the results were excluded from
Table II.

In Figs 1 to 5 we use the box-plots to present the median,
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the standard deviation, the normality of the distribution and
the outliers of each feature. The total range of each feature
is shown with a vertical dashed line while the lowest and the
highest values are shown with small horizontal lines at its
ends. The box in the middle represents the distribution of the
feature in the range between the points of the first quartile
(Q1) and the third quartile (Q3), where Q1 is defined as the
middle number between the smallest number and the median
of the data set. Similarly, Q3 is defined as the middle value
between the median and the highest value of the data set. The
median of each feature is shown with a small horizontal line
within the box. In each figure, a box-plot of a feature is plotted
against all the six classes. A dashed and a solid horizontal
lines show the median of the euploidy and the median of the
T21 respectively. These two lines were placed manually for
visualization purposes.

The purpose of this analysis is to gain additional knowledge
about the statistical properties and the significance of the
separability of every feature. For instance, the medians of the
populations of each class can be roughly compared by simply
observing the distance between them. Also, it is interesting
to visualize how the distribution around the median is spread.
This can be done by observing the area enclosed in the box
around the median. The normality of the distribution can also
be observed if the median lies in the middle of the box. The
outliers are also marked by a cross allowing a rapid way to
estimate their population and their statistical significance with
respect to the distance from the median.

Fig. 1 shows statistical information of the fetal CRL
parameter. The value of the CRL is extracted during the
ultrasound screening. The doctor is manually annotating the
preferred positions of the crown ramp by looking at the fetus
on the screen. The manual annotation of the CRL creates a
possibility for human errors in the measurement. Indeed, it
may be that the high variance of the data for all the classes can
be explained due to this observer error. It is worth mentioning
that the median of the T21 is significantly higher from the
euploidy while the median of the O.C.A. is lower. This fact
also explains that a system which in the training procedure
takes all the trisomies as a single class may not achieve a
robust generalization.

In Fig. 2 it is shown that the variance of the data for the
serum free β-hCG feature is narrow with an exception on the
data of the triploidy. As can be seen, there is one extreme
outlier that forces the data to a non-gaussian distribution. This
is reasonable, taking into account the small population of in
this class. The feature serum free β-hCG has high separability
by means of their median, for the pair “euploidy & T21” and
low separability for the pairs “euploidy & Turner”, “T13 &
Triploidy” and “T18 & Triploidy”.

The analysis of the feature Delta NT is shown in Fig. 3.
The variance of the data in the classes T13, T18 and Turner is
relatively higher with respect to the data in the euploidy and
triploidy classes. It is also shown that the seperability between
the euploidy and the trisomies T13, T18, T21 and Turner has
statistical significance.

It is well known that the maternal age plays a significant
role for the classification of the euploidy or T21. This can

also be observed in Fig. 4. The mean maternal age of the
euploidy is 33 years while for the T21 is 38 years. It can
be seen also that the means of euploidy and triploidy do not
have significant statistical differences. While the mean of the
materal age of T21, T13 and T18 is significantly higher, the
mean for Turner is significantly lower. This can be seen in Fig.
4 and mathematically by the Wilcoxon Rank Sum method,
shown in Table II.

There is a statistical significance in the difference of the
means between euploidy and the rest of the trisomies for the
feature PAPP-A. In Fig. 5 it is shown that the mean of the
euploidy has a higher value with respect to the means of
the O.C.A. The variance of all the classes for this feature is
relatively low. In addition to the statistical analysis done in
these data and the useful information regarding the nature of
the data, an expert obstetrician can use these graphs while
examining a new case. It can provide to him a tool for
visualizing a new case with respect to thousands of previously
confirmed cases.

D. Cross validation

The systems and approach described in this paper were
tested with a 3-fold cross validation. This was done by
randomly dividing the data of 51,208 (50,517 euploidy, 408
T21, and 283 O.C.A.) pregnancies into three training and
evaluation sets containing proportionally the same numbers
of euploidy and aneuploidy cases, as shown in Tables III and
IV.

TABLE III: The number of cases that were used for training
in the cross-validation procedure.

Training Euploidy T21 T18 T13 Triploidy Turner

Fold 1 33,619 279 106 38 22 41
Fold 2 33,840 278 105 39 23 40
Fold 3 33,982 277 104 37 24 39

TABLE IV: The number of cases that were used for validation
in the cross-validation procedure.

Validation Euploidy T21 T18 T13 Triploidy Turner

Fold 1 16,898 129 39 14 10 13
Fold 2 16,677 130 40 13 9 14
Fold 3 16,535 131 41 15 8 15

E. System 1: Classification into two classes: euploidy and T21

The dataset was split into a training and an evaluation
set. The training dataset consisted only of euploidy and T21
pregnancies (Fig. 6), whereas the evaluation set contained also
cases with O.C.A. Various supervised models with ANN, SVM
(kernel 1 and 2) and k-NN were developed and the best results
in separating euploidy from T21 pregnancies were achieved by
using a standard multilayer feed-forward neural network with
one hidden layer. There were nine neurons in the input layer,
representing the nine markers that were used for training the
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Fig. 1: Visualization of statistical properties of the CRL
feature.
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Fig. 2: Visualization of statistical properties of the β-hCG
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Fig. 3: Visualization of statistical properties of the Delta NT
feature.
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age feature.
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Fig. 5: Visualization of statistical properties of the PAPP-A
MoM feature.

TABLE V: The parameters used as input vectors for the
training models

Parameter Model of 6 inputs Model of 9 inputs

Maternal age Used Used
History of previous T21 Used Used
Crown ramp length Used Used
Delta nuchal translucency Used Used
Serum PAPP-A Used Used
Serum free β-hCG Used Used
Nasal bone Not Used Used
Ductus venosus flow Not Used Used
Tricuspid flow Not Used Used

networks (Table V). The network output target was set to 0
for T21 and 1 for euploidy.

After completion of the learning process through the use of
the training dataset, the system was tested by the evaluation
dataset which consisted of euploidy, T21 and O.C.A. It is
important to mention that system 1 can be considered as
an autonomous system where T21 cases are detected with
considerably low FPR. The drawback of this system is that the
O.C.A. are mostly predicted as euploidy. These false negative
predictions of the O.C.A. are important to be identified as
abnormalities. While generally the O.C.A. have an increased
possibility of miscarriage during pregnancy, and therefore the
early diagnosis of such abnormalities are not considered to
have equal importance to the T21, in some cases the embryo
survives until the late stages of pregnancy, or it is born and
die few days later. This fact may cause health complications
to the mother, and generate additional psychological damage
to the relatives.

In order to predict correctly the O.C.A. we propose system
2 that minimizes the FNR with a cost of increasing the FPR
and creating false alarm to some families. The doctors may
use system 1 or system 2, having in mind the cost and the
risk of sending a euploidy for further invasive examinations
or considering an abnormal case as euploidy and let the
pregnancy continue naturally.
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F. System 2: Separate classification of three classes: euploi-
dies, T21 and all the O.C.A.

The same approach followed in developing system 1 had
been followed for generating suitable classification models that
could separate not only T21 from euploidy cases but also to
test for the capability to separate the O.C.A. from the euploidy
cases.

Fig. 6: System 1, distinguishing between euploidy and T21
for the 9 input ANN. In this system the training set contained
only euploidy and T21 cases. The evaluation set contained
euploidy, T21 and O.C.A.

Fig. 7: System2, distinguishing between euploidy, T21 and
O.C.A. It is a combination of four ANN trained with 1)
euploidy and T21, 2) euploidy and T18, 3) euploidy and Turner
and 4) T21 and O.C.A.

In a first attempt we tried to build a neural network that
could predict six situations. These were set as the outputs of
the ANN. They were the euploidy, T21, trisomy 18, trisomy
13, Turner syndrome and triploidy. Although the cases of T21
were separable from euploidy, when the O.C.A. were involved
during the training phase of the network, this separation de-

teriorated and most of the O.C.A. were classified as euploidy.
Thus, this approach was abandoned.

A second approach that we tested was to build neural
networks that were trained to separate euploidy from T21,
euploidy from trisomy 18, euploidy from trisomy 13, euploidy
from Turner syndrome, euploidy from triploidy and T21 from
O.C.A. This approach was also abandoned since it failed to
successfully separate the groups. It was observed however, that
most of the false positive cases (i.e. euploidy cases classified
as aneuploidy) were the same for all the models examined.
Thus, it was decided to exclude the models “euploidy & T13”
and “euploidy & triploidy” from the overall system due to very
low performance and combine the results of the tree systems
in a logical way (“euploidy & T21”, “euploidy & T18”, and
“euploidy & Turner syndrome”).

System 2 was therefore decided to involve two stages
for distinguishing between euploidy, T21, and aneuploidy
pregnancies. In stage 1, each case is assessed independently
by the three models explained above and classified as euploidy
or aneuploidy (T21, trisomy 18 or Turner syndrome). This
is done with the logical statemenet ”If a case is classified
as euploidy by all three models then this case is given a
final classification as euploidy, otherwise is send to stage
2 for further examination”. In Stage 2, any case given an
aneuploidy result by any of the three models is reassessed
by a nine-neuron model of “T21 & O.C.A.” with a binary
output (0 for T21 and 1 for O.C.A.) and reclassified into T21
or O.C.A. as shown in Fig. 7.

III. RESULTS

We present our results in terms of detection rate, the
accuracy, and Matthews correlation coefficient (MCC) [32].
A correct classification of an abnormal case is called true
positive prediction (TP), while a false classification of an
abnormal case is called false negative prediction (FN). True
negative (TN) and false positive (FP) are the correct and false
classification respectively, for a normal case. The detection rate
is defined as the correctly classified instances divided by the
total population of each class. The accuracy is defined as the
sum of true positives and true negatives divided by the total
population. The MCC is a balanced measure of the quality of
binary classifications in the range -1 and 1 and it is commonly
used to describe the results of highly unbalanced class popula-
tions. A value of -1 represent a complete error of classification
while a value of 1 represents perfect classification. A value
of 0 shows random classification. It was introduced by the
biochemist Brian W. Matthews in 1975 and it is defined as:

MCC = TP∗TN−FP∗FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

(2)

A. System 1: Classification into two classes: euploidy and T21

The results of System 1 for fold 1 and for ANN, SVM
(kernel 1 and 2) and k-NN are summarized in Table VI. The
results of the three-fold cross validation for ANN are shown
in Table VII. In table VIII we present the histogram of the
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TABLE VI: Accuracy and the Matthews correlation coefficient
(MCC) of the ANN, SVM and k-NN of System 1 for the first
validation dataset. System 1 was trained with euploidy and
T21 cases. It was validated for the entire database including
euploidy, T21 and O.C.A.

System 1 Accuracy MCC

ANN 0.96 0.40
SVM 1 0.93 0.31
SVM 2 0.92 0.28
k-NN 0.92 0.28

TABLE VII: Detection rates of ANN of System 1 for the three
validation datasets. System 1 was trained with euploidy and
T21 cases. It was validated for the entire database including
euploidy, T21 and O.C.A.

System 1 Euploidy T21 O.C.A.
Fold 1 96.1% 100.0% 27.6%
Fold 2 97.1% 93.9% 57.9%
Fold 3 97.2% 90.1% 65.8%

nine-neuron network output where in the range 0 to 0.5 the
system correctly identified as abnormal all 129 cases of T21
with a FPR of 3.9% (Fig. 6). In the case of T21 pregnancies
the average output value was 0.029 (standard deviation 0.074)
and in 123 (95.4%) of cases the output was in the range of 0
to 0.2. In the euploidy pregnancies the average output value
was 0.95 (standard deviation 0.15) and in 15,604 (92.3%) of
cases the output was in the range of >0.8 to 1. The overall
diagnostic yield of the system was true negative rate (TNR)
of 96.1%, FNR of 0%, true positive rate of 100% and FPR of
3.9%. Table VIII has a particular importance. It is shown that
the FPR can be reduced considerably to 1% by changing the
threshold to 0.2, if the society is ready to support 4.6% of the
T21 which will be undetected (FN). This can be interpreted
as about 50 births of T21 in 1,000,000 births.

TABLE VIII: Performance of System 1, the nine-neuron model
“euploidy & aneuploidy” where each case was quantified to a
class between 0 and 1.

Output Euploidy
n=16,898

T21 n=129 O.C.A. n=76

0 to 0.1 104 (0.6%) 115 (89.2%) 12 (15.8%)
> 0.1 to 0.2 80 (0.5%) 8 (6.2%) 3 (3.9%)
> 0.2 to 0.3 129 (0.8%) 3 (2.3%) 1 (1.3%)
> 0.3 to 0.4 138 (0.8%) 2 (1.6%) 2 (2.6%)
>0.4 to 0.5 203 (1.2%) 1 (0.8%) 3 (3.9%)
>0.5 to 0.6 192 (1.1%) - 2 (23.6%)
>0.6 to 0.7 217 (1.3%) - 2 (23.6%)
>0.7 to 0.8 231 (1.4%) - 5 (6.6%)
>0.8 to 0.9 123 (0.7%) - 7 (9.2%)
>0.9 to 1.0 15481 (91.6%) - 39 (51.3%)

B. System 2: Classification into three classes: euploidy, T21
and O.C.A.

System 2 is consisted of two subsystems (Stage 1 and
Stage 2). In Stage 1 the system classifies an unknown case
as euploidy or aneuploidy. In Stage 2, the aneuploidies are
being further classified as T21 or O.C.A. (Fig. 7).

1) Classification into euploidy or aneuploidy by three mod-
els.: The network combined the nine-neuron model “euploidy
& T21” (used in system 1) and the six-neuron models “eu-
ploidy & trisomy 18” and “euploidy & Turner” syndrome.
This network correctly classified as euploidy (concordance
in all three systems) 15,820 (93.6%) of the 16,898 euploidy
cases and as aneuploidy (in any one of the three systems) 196
(95.6%) of the 205 aneuploidy cases, including all 129 cases
of T21 (100%), 34 (87.2%) of the 39 cases of trisomy 18,
11 (78.6%) of the 14 cases of trisomy 13, 8 (80%) of the 10
cases of triploidy and 11 (84.6%) of the 13 cases of Turner
syndrome (Fig. 7).

Therefore, at the end of Stage 1, 1,274 cases were classified
as aneuploidy, including 1,078 euploidy pregnancies (FPR
6.4%) and 15,829 cases were classified as euploidy, including
15,820 (99.9%) which were truly euploidy and 9 of the O.C.A.
The detection rate of the euploidy of SVMs with kernel 1 and 2
in Stage 1 is 93.4% and 92.2% and for the aneuploidies 73.2%
72.68% respectively. The k-NN classified correctly 91.7% of
the euploidy and 74.2 of the aneuploidies.

The TPR and TNR for the networks trained with “euploidy
& T21”, “euploidy & T18” and “euploidy & Turner” are
shown in Figs 8, 9 and 10 for the three evaluation datasets,
labeled as fold 1, fold 2 and fold 3. We present the values
of the TPR and TNR for different values of the threshold that
were used to quantize the outputs of the networks and classify
instances into the desired classes.

We tested several values of the threshold in the range be-
tween 0 and 1 with a step of 0.1. The first plot in Fig. 8 shows
the results of the network “euploidy & T21”. The TPR for the
T21 aneuploidies is plotted with black continuous line and
with black dashed line the TNR for the first evaluation dataset
(fold 1). This network was used individually to construct
system one, while it is also used as a subpart in system two.

The TPR reaches maximum rate 100.0% at a 0.48 threshold.
The FPR at the maximum TPR is 3.9%. The results of the
second and the third evaluation datasets are shown in the next
two plots respectively in Fig. 8.

The results of the network “eupoid & T18” for the three
validation datasets are shown in Fig. 9. The TPR of the
trisomy 18 cases reaches maximum rate 89.8% at a FPR of
2.6% and threshold 0.98 for the first evaluation dataset. The
TPR of the second and third evaluation dataset at around 3%
FPR is 92.5% and 90.2% respectively.

The results of the network “euploidy & Turner” for the three
validation datasets are shown in Fig. 10. The TPR for the first
evaluation dataset of the Turner cases reaches maximum rate
76.9% at a FPR of 1.3% and threshold 0.98. The TPR of the
second evaluation dataset reaches maximum rate 100.0% at a
FPR of 1.7%. The TPR of the third evaluation dataset reaches
maximum rate 66.7% at a FPR of 3.0%.
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Fig. 8: TPR (filled line) and TNR (dashed line) for the network
“euploidy & T21”. The three plots show the results for the
three validation sets (fold 1, 2 and 3).
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Fig. 9: TPR (filled line) and TNR (dashed line) for the network
“euploidy & T18”. The three plots show the results for the
three validation sets (fold 1, 2 and 3).
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Fig. 10: TPR (filled line) and TNR (dashed line) for the
network “euploidy & Turner”. The three plots show the results
for the three validation sets (fold 1, 2 and 3).

TABLE IX: Accuracy and the Matthews correlation coefficient
of the ANN, SVM and k-NN of System 2, Stage 2 for the first
validation dataset. System 2 in stage 2 was trained with T21
and O.C.A. It was validated for the entire database including
euploidy, T21 and O.C.A.

System 2 Accuracy MCC

ANN 0.94 0.88
SVM 1 0.64 0.13
SVM 2 0.64 0.11
k-NN 0.51 -0.05

TABLE X: Detection rates of the ANN of the system 2 in
phase 2. System 2 is consisted by one neural network build
with T21 and O.C.A.

System 2 phase 2 Euploidy T21 O.C.A.

Fold 1 93.7% 100.0% 84.2%
Fold 2 96.7% 90.0% 57.9%
Fold 3 96.2 % 87.8% 44.3%

2) Classification into T21 or O.C.A.: The 1,274 cases
classified as aneuploidy in Stage 1 were examined by the nine-
neuron model “T21 & O.C.A.” in Stage 2 (Fig. 7). The output
values for all cases of T21 were 0 to 0.1, whereas the values of
the O.C.A. were mostly distributed near to 1. In 64 (95.5 %)
of the 67 O.C.A. the output was more than 0.1 and therefore
three of these cases were wrongly classified as T21. SVMs
with kernel 1 and kernel 2 classified 98.5% and 97.7% of the
T21 and 6.6% of the O.C.A. k-NN classified 62.0% of the
T21 and 32.9% of the O.C.A.

The accuracy and MCC of the ANN, SVM and k-NN for the
System 2 in Stage 2 for the first fold validation are summarized
in Table IX. The detection rates of the first, second and the
third validation sets for the ANN are summarized in Table X.
It is shown from Table IX that only ANN were able to separate
T21 from the O.C.A. while SVM and k-NN failed.

IV. DISCUSSION

The findings of our studies demonstrate the value of ANN
schemes in the prediction of T21 and O.C.A. from ultrasono-
graphic and biochemical markers at 11-13 weeks of gestation.

A multitude of ANN structures, training procedures and
evaluation strategies have been tried. In this study we used
multilayer feed forward neural systems because these are
proved to be the most suitable from the point of view
of satisfactory generalization and diagnostic yield for such
predictive systems. This was confirmed empirically by the
authors after running several ANN models with different
structures and parameters and observing their performance.
The various multilayer networks of neurons were build and
adjusted according to a set of parameters for each case of
either euploidy or aneuploidy fetus in order to maximize the
correct identification of each group. We have carried out a
comparative study by using other classification techniques
such as the SVMs and the k-NNs. The higher accuracy on
the classification of euploidy, T21 and O.C.A. was achieved
with neural networks structures.
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In the traditional approach to first trimester screening for
T21 the a priori risk is multiplied with the likelihood ratio
of each sonographic and biochemical marker. Algorithms
combining six parameters, including maternal age, previous
history of aneuploidy, delta NT, serum free β-hCG MoM and
PAPP-A MoM have been successfully applied to screening for
T21 achieving a detection rate of about 90.0%, at a FPR of
5.0% [4]. In specialist fetal medicine centres the performance
of screening can be improved further, with an increase in
detection rate to about 95.0% and a decrease in FPR to less
than 3.0%, by the inclusion the additional sonographic markers
of presence or absence of the fetal nasal bone and normal
or abnormal blood flow across the tricuspid valve and in the
ductus venosus [4].

In this study we initially attempted to develop a supervised
ANN systems with six outputs: one each for the euploidy preg-
nancies and the five chromosomal abnormalities. However, this
was unsuccessful because the cases of T21 were separable
but when the O.C.A. were in the system, this separation was
destructed and most of the aneuploidies were classified as
euploidy.

Subsequently, we concentrated our efforts at developing
neural network models with the intention of separating eu-
ploidy from T21 pregnancies. One model utilized six neurons
representing the basic parameters of maternal age, previous
history and the other 9 neurons representing the parameters
shown in Table V columns 1 and 2 respectively. A large
database consisting of 33,619 euploidy and 279 T21 pregnan-
cies was used to train the systems which were then used for
testing the totally unknown database which included 16,898
euploidy and, 129 T21 and 76 OCA pregnancies. The six-
neuron network correctly identified 92.3% of the cases of T21
at a FPR of 3.9% and the nine-neuron network detected all
cases of T21 at a FPR of 3.9%.

The six-neuron and nine-neuron “euploidy & T21” mod-
els recognized that 63.2% and 27.6% respectively, of the
aneuploidies other than T21 were different from euploidy
pregnancies. Subsequently, various attempts were made to
improve the detection rate of the O.C.A. by building neural
networks that were trained to separate euploidy from each type
of aneuploidy. The performance of neural networks attempting
to separate trisomy 13 and triploid from euploidy pregnancies
was low and these models were abandoned. A two-stage
approach involving four neural networks was then used to
achieve the best overall performance. In Stage 1, each case was
assessed independently by three models (“euploidy & T21”,
“euploidy & trisomy 18” and “euploidy & Turner syndrome”).
This two-stage approach correctly identified all cases of T21
and 84.2% of the O.C.A. but at an overall FPR of 6.4%.

Like every methodology, ANN and the computational intel-
ligence approach have relative advantages and disadvantages.
Some of the significant advantages, when compared to the
above methodologies the proposed approach are:

1. Every case is seen by the system as a string of parameter
values and are thus processed and assessed simultaneously. At
the same time data related to the fetus are seen and assessed
together with data that is collected from the mother.

2. Each new case that has been observed during pregnancy

can become a new definite case once the child delivery takes
place. This new case can add to the acumen of the existing
knowledge base by simply running the learning algorithm once
the new case enters the database.

3. In addition to the above, advantages such as fault toler-
ance, generalisation handling, missing data handling, learning
and inference mechanisms, are advantages inherited from
computational intelligence.

At present most medical centres providing first trimester
screening for T21 measure fetal NT and CRL and maternal
serum free β-hCG and PAPP-A. In such centres the use of
the proposed combined six-neuron system, could correctly
identify as aneuploidy about 93.0% of the cases of T21
and 63.0% of those with O.C.A., at a FPR of 3.9%. This
performance of screening compares favourably with the 90.0%
detection rate of T21, at a FPR of 5.0%, achieved by the
traditional algorithms for screening [4]. Nevertheless, in all
cases classified by the neural network as being suspicious
of T21 invasive testing by chorionic villous sampling or
amniocentesis would still be necessary to distinguish between
the euploidy and aneuploidy pregnancies and in the diagnosis
of the exact type of aneuploidy.

In fetal medicine centres, with expertise in assessing the
fetal nasal bone and Doppler flow across the tricuspid valve
and in the ductus venosus in addition to the measurements
of fetal NT and CRL and maternal serum free β-hCG and
PAPP-A, there are two options on the use of ANNs. The first
is to use a nine-neuron “euploidy & T21” network which
could correctly identify as aneuploidy all cases of T21 and
27.6% of those with other major aneuploidies, at a FPR of
3.9%. Alternatively, a two stage approach involving four neural
networks can be used which could also correctly identify as
aneuploidy all cases of T21 and 84% of those with O.C.A.,
but at an increased FPR of 6.4%. Since in all cases classified
by the neural networks as being suspicious of T21 invasive
testing would be necessary to distinguish between the euploidy
and aneuploidy pregnancies it is likely that the first option,
with a substantially lower FPR, would be preferred by the
parents and would also be more cost-effective. Although the
second option identifies more of the O.C.A., unlike T21
these conditions are highly lethal either in utero or in the
neonatal period and they are associated with abnormalities
that can be easily detected by ultrasonography. These include
holoprosencephaly, exomphalos and megacystis in trisomies
18 and 13 [33], large cystic hygromas in Turner syndrome
[34] and either an enlarged partially molar placenta or small
placenta but severely growth restricted fetus with pronounced
wasting of the body and sparing of the head in triploidy. Since
the prevalence of these defects is less than 0.1% the effect on
the overall proportion of pregnancies requiring an invasive test
would be minimal.

V. CONCLUSION

We have presented a non-invasive prenatal diagnosis of
chromosomal abnormalities in the first trimester of the preg-
nancy. The collection of the database, took several years and it
covers a wide area of population such as age range, ethnicity,
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information whether the mother is alcoholic, drug addicted,
cases with previous history. The population of the cases in
our database, ensures statistical confidence of our results,
compare to databases used in similar work of other groups. We
believe that medical diagnosis systems that classify instances
based on statistical methods should provide representative
databases with a convincing number of population. Also, the
results should be presented with cross validation, ensuring
their robustness. The most important however is the fact that
our system identifies and predicts O.C.A. than T21, such as
trisomy 18, trisomy 13, Turner syndrome and Triploidy. The
diagnosis is done in the presence of the pregnant woman with
a computer system in the doctor’s office by basically using
routine examination data within a negligible time and with
low financial cost.

We achieved with ANN a 100.0% detection rate of T21 with
FPR of 3.9% and 84.2% of the O.C.A. with a FPR of 6.4%.
We note that these results do not yield perfect classification,
neither accuracy of 1 since there is still a FPR of 6.4%. We
have repeated the same experiments with SVM and k-NN and
it was experimentally concluded that the best results for this
problem would be achieved with the ANN. More precisely,
SVM and k-NN yield similar results with lower accuracy than
the proposed ANN structure of both systems 1 and 2. It is
also prominent that both SVM and k-NN were not able to
distinguish the T21 from the O.C.A.

For future work we need to emphasise our investigations
on exploring other neural network schemes such as recurrent
networks and the possibility of using parameters from the
father. Preliminary results show that it is worth investigating
the substitution of the parameter values in MoMs with the
actual raw values. it is also worth mentioning that the maternal
cell-free DNA screening method does not use any information
from the mother or the father; such as the age. This important
information should be included in their methodology and the
analysis of their results.
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