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ABSTRACT 

 

Objective: To develop a new formula for ultrasonographic estimation of fetal weight (EFW) and 

evaluate the accuracy of this and all previous formulas in the prediction of birthweight. 

 

Methods: The study population consisted of 5,163 singleton pregnancies with fetal biometry at 

22-43 weeks’ gestation and livebirth of phenotypically normal neonates within 2 days of the 

ultrasound examination. Multivariable fractional polynomial analysis was used to determine the 

combination of variables that provided the best-fitting models for EFW. A systematic review was 

also carried out of articles reporting formulas for EFW and comparing EFW to actual birthweight. 

The accuracy of each model for EFW was assessed by comparing the mean percentage error 

(MPE), absolute mean error (AE), proportion of pregnancies with an AE <10% and Euclidean 

distance. 

 

Results: The most accurate models, with the lowest Euclidean distance and highest AE <10%, 

were provided by the formulas incorporating >3 rather than <3 biometrical measurements. The 

systematic review identified 45 studies describing a total of 70 models for EFW by various 

combinations of measurements of fetal head circumference (HC), biparietal diameter (BPD), 
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femur length (FL) and abdominal circumference (AC). The most accurate model with the lowest 

Euclidean distance and highest AE <10% was provided by the formula of Hadlock et al, 

published in 1985, which incorporated measurements of HC, AC and FL; there was a highly 

significant linear association between EFW with birthweight (r=0.959; p<0.0001) and the EFW 

was within 10% of birthweight in 80% of cases. The performance of the best model developed in 

this study, utilizing HC, AC and FL, was very similar to that of Hadlock et al.  

 

Conclusion: Despite many efforts to develop new models for EFW, the one reported in 1985 by 

Hadlock et al,. from measurements of HC, AC and FL, provides the most accurate prediction of 

birthweight and can be used for assessment of all babies as well as those suspected to be 

either small or large.   

 

 

Introduction 

 

Ultrasonographic estimation of fetal weight (EFW) is an essential part of fetal medicine and 

prenatal care, allowing the identification of appropriately grown for gestational age (AGA), small 

(SGA) and large (LGA) fetuses. The EFW is derived from various combinations of 

measurements of fetal head circumference (HC), biparietal diameter (BPD), femur length (FL) 

and abdominal circumference (AC). However, there is no universally accepted formula for EFW 

and in the last six decades >60 formulas have been reported, which were mainly derived from 

the study  of a very small number (<300) of fetuses.  
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The objective of this study of 5,163 pregnancies, with fetal biometry at 22-43 weeks’ gestation 

and livebirth of phenotypically normal neonates within 2 days of the ultrasound examination, 

was to develop a new formula for EFW and evaluate the accuracy of this and all previous 

formulas in the prediction of birthweight. 

 

 

 

 

 

 

Methods 

 

Study population 

 

The data for this study were derived from ultrasound examination in women attending the fetal 

medicine units at King’s College Hospital, London, UK and Medway Maritime Hospital, Kent, UK 

(between January 2006 and December 2017). The fetal databases were searched to identify 

pregnancies fulfilling the following criteria: singleton pregnancy, dating by fetal crown-rump 

length at 11-13 weeks’ gestation, ultrasound examination at 22-43 weeks’ gestation and 

available measurements of fetal HC, BPD, AC and FL, livebirth of phenotypically normal 

neonate, and birth within 2 days of the ultrasound examination.  
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The ultrasound scans were carried out by sonographers who had the FMF Certificate of 

Competence in Fetal Abnormalities. The BPD and occipito-frontal diameters (OFD) were 

measured at the level of the transventricular plane from the outer bone margin to the outer bone 

margin and the HC was calculated [HC = π × (OFD + BPD)/2]. The fetal abdomen was 

measured in a cross-sectional view with visible stomach bubble and umbilical vein in the 

anterior third at the level of the portal sinus; the transverse and anterior-posterior diameters 

(ATD, APD) were measured and the AC was calculated [AC = π × (ATD + APD)/2]. The FL was 

measured with calipers placed on the outer borders of the diaphyses.  

 

Maternal demographic characteristics, obstetric and medical history, and fetal biometry were 

stored in a fetal database. Pregnancy outcome, including indication and method of delivery, 

birthweight and findings from examination of the neonate were obtained from computerized 

records in each labor ward. 

 

Identification of formulas for EFW 

 

A systematic review was carried out of articles reporting formulas for EFW and comparing EFW 

to actual birthweight. The inclusion criteria were singleton human pregnancies, ultrasound 

measurements of fetal HC, BPD, AC and FL, individually or in combination, and interval 

between ultrasound examination and birth of <15 days. The term ‘fetal weight’ was searched 

through PubMed and Cochrane CENTRAL library from 1964, when the first paper was 
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published,1 to January 2018 and from references of other systematic reviews. No language 

restrictions applied.  

 

All citations were examined to identify potentially relevant studies; the abstracts of these were 

then revised by two independent reviewers (AH and AMZ) who selected eligible studies for full 

assessment of the complete article. Any disagreements were resolved by discussion and the 

opinion of a third party (KN).  

 

Statistical analysis 

 

Development of new model for EFW 

 

The potential variables for prediction of birthweight were measurements of BPD, HC, AC, FL in 

cm and gestational age in days. The data for birthweight were logarithmically transformed to 

achieve Gaussian normality which was assessed by inspection of histograms and probability 

plots. The study population was divided into a testing dataset (n=3,000) and a validation set 

(n=2163). In the testing dataset, multivariable fractional polynomial analysis was used to 

determine the combination of variables that provided the best-fitting equation using a 

combination of powers ranging from -3 to 3. We examined each biometric parameter using a 

combination of linear and fractional polynomial terms and identified formulas that provided a 

significant contribution in the regression analysis. For each group, we selected the two best 

models based on the model R2, root mean square error (RMSE), residual standard deviation 
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(SD) and mean percentage error (MPE) the absolute mean error (AE), proportion of 

pregnancies with an AE <10% and Euclidean distance.2  

 

The MPE provides a measure of the systematic deviation of the EFW from the birthweight [MPE 

= 100 x (EFW – birthweight) / birthweight]. The AE measures the absolute value of the deviation 

of EFW from the actual birthweight. The SD of the MPE and AE provides a measure of the 

variation of the prediction error and reflects precision of the formula in calculation of EFW. The 

Euclidean distance, calculated from √(MPE2 + MPESD2) provides a measure of accuracy of 

prediction of the model.  

 

Assessment of accuracy of published models for EFW 

 

All models were compared for accuracy in prediction of birthweight by assessing the MPE with 

95% limits of agreement (mean + 1.96 x SD of MPE), AE, proportion of pregnancies with error 

<10% and Euclidian distance. We also examined the proportion of pregnancies with error <10% 

and Euclidian distance in the cases where the birthweight was <2,500 g and those with 

birthweight >4,000 g. 

 

The statistical software package SPSS 24.0 (IBM SPSS Statistics for Windows, Version 24.0. 

Armonk, NY: IBM Corp, 2013) and StatsDirect version 3.1.11 (StatsDirect Ltd, Cheshire, UK) 

were used for the data analyses. 
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Results 

 

Study population 

 

The entry criteria were fulfilled by 5,163 pregnancies. Pregnancy characteristics and indications 

for delivery are summarized in Table 1. The ultrasound examinations were performed by 419 

examiners. 

 

New model for EFW 

 

The new models for EFW derived from the testing dataset and assessed in the validation set of 

the study population are shown in Table 2. The most accurate models, with the lowest 

Euclidean distance and highest AE <10%, were provided by the formulas incorporating >3 

rather than <3 biometrical measurements. 

 

Literature search 

 

The literature search identified 4,770 citations and 148 of these were selected for further 

evaluation (Figure 1). There were 48 articles reporting formulas for EFW and comparing EFW to 

actual birthweight.1,3-49 However, in three cases the AE was >50%; it is possible that in these 

articles there was an error in the formula and they were not included in the further analysis of 
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data.47-49 Details of the 45 included studies on a total of 70 formulas for EFW are provided in 

Table 3.1,3-46 In 33 (71.7%) of the 46 studies the number of patients used for development of the 

formulas was <200 and in most cases the populations examined were unselected, but a few 

studies were confined to the examination of small or large fetuses. In most studies the interval 

between ultrasound examination and birth was <7 days, but in one it was <14 days30 and in 

another <15 days.34 

 

Accuracy of EFW formulas 

 

The accuracy of each published model for EFW in the prediction of birthweight in our 5,163 

pregnancies, assessed by comparing the MPE, AE, proportion of pregnancies with an AE <10% 

and Euclidean distance, is shown in Table 4.  

 

Overall results 

 

The most accurate models, with the lowest Euclidean distance and highest AE <10%, were 

provided by the formulas of Hadlock et al, which incorporated measurements of HC, AC, FL with 

or without the addition of BPD.15 There was a highly significant linear association between EFW, 

derived by the measurement of HC, AC and FL, with birthweight (r=0.959; p<0.0001; Figure 2) 

and the EFW was within 10% of birthweight in 80% of cases. 
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The performance of the best models developed in this study, utilizing HC, AC and FL, with or 

without BPD, was very similar to those of Hadlock et al.15 High performance was also achieved 

by the models of Ott et al., which incorporated measurements of HC, AC, FL,38 Sabbagha et al., 

which incorporated measurements of BPD, HC, AC, FL and gestational age,46 and Ben-Haroush 

et al., which incorporated measurements of AC and FL, with or without the addition of BPD or 

BPD and HC.19  

 

 

 

In papers reporting models for different combinations of measurements, inclusion of HC and / or 

BPD improved the accuracy provided by measurement of AC and/or FL alone.8,9,10,12,15,16,19 

There are four papers reporting models for different combinations of measurements with and 

without FL; inclusion of FL improved the accuracy of the models in two,26,29 and produced 

similar results in the other two.16,27 

 

Small babies 

 

In the subgroup of babies with birthweight <2,500 g, the most accurate models of EFW, with the 

lowest Euclidean distance and highest AE <10%, were provided by the formula of Hadlock et 

al., 15 Dudley et al.,40 and Scott et al.,41 all of which used measurements of HC, AC and FL. 

However, the model of Scott et al.,41 was specifically developed for the assessment of small 

babies and performed poorly in the whole population and especially in the subgroup of large 
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babies. The performance of the model of Dudley et al.,40 was poorer than that of Hadlock et 

al.,15 in the whole population and especially in large babies. In the model by Hadlock et al.,15 the 

EFW was within 10% of birthweight in 73% of cases of small babies, compared to 80% for the 

whole population. 

 

Large babies 

 

In the subgroup of babies with birthweight ≥4,000 g, the most accurate prediction was provided 

by the models of Ferrero et al., which used measurements of AC and FL,18 Merz et al., which 

used measurements of BPD and AC,12 and Chen et al., and Souka et al., which used 

measurements of BPD, HC, AC and FL.44,45 However, these models performed poorly in the 

whole population and especially in the subgroup of small babies. The models reported by 

Hadlock et al., were among the best ones also for the prediction of large babies; however, in 

common with our models, the accuracy of the model combining BPD, AC and FL was superior 

to that combining HC, AC and FL.15 In the model by Hadlock et al., using HC, AC and FL15 the 

EFW was within 10% of birthweight in 76% of cases of large babies, compared to 80% for the 

whole population. 

 

Two-stage screening 

 

In this study the model with the highest performance for babies with birthweight <2,500 g was 

that of Scott et al., which used measurements of HC, AC and FL,41 and the best model for 
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babies with birthweight ≥4,000 g was that of Ferrero et al., which used measurements of AC 

and FL.18 First-line screening was carried out by the model of Hadlock et al., using HC, AC and 

FL,15 and on the basis of the EFW the population was divided into three groups. In the group 

with EFW <2,500 g the model of Scott et al.,41 was applied to derive a new EFW, in the group 

with EFW ≥4,000 g the model of Ferrero et al.,18 was applied to derive a new EFW, and in the 

group with EFW 2,500 to 3,999 g the values obtained from the model of Hadlock et al.,15 were 

retained. The accuracy of the new combined EFW in the prediction of birthweight was then 

examined (Table 4).  

 

 

 

 

 

 

 

 

 

Discussion 

 

Principal findings of this study 
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This study has demonstrated that first, there is a high association between EFW and 

birthweight, and second, the most accurate model for prediction of birthweight is one that 

includes measurements of the fetal head as well as AC and FL. The study has also 

demonstrated that there are large variations in the accuracy of 70 previously reported models of 

EFW in the prediction of birthweight. The most accurate model was that of Hadlock et al,15 and it 

is rather disappointing but impressive that the prediction of a model reported from the study of 

276 patients in 1985,15 could not be improved by our study of several thousands of patients in 

2018. In both the model of Hadlock et al15 and the one developed in this study the EFW, derived 

from measurements of HC, AC and FL, was within 10% of birthweight in 80% of cases. 

 

In the assessment of small or large babies, some models were better than that of Hadlock et 

al.15 However, a two-stage strategy, whereby the model of Hadlock et al,15 is first applied in the 

whole population and those with EFW below or above certain cut-offs have their EFW 

recalculated using other models, failed to improve the accuracy of prediction of birthweight 

either in the whole population or in subgroups of small or large babies.  

 

Strengths and limitations of the study 

 

Strengths of our study include the large population examined covering a wide range of 

gestational ages and birthweights, pregnancy dating based on fetal crown-rump length, 

proximity of the ultrasound examination to delivery, trained sonographers that carried out fetal 

biometry according to a standardized protocol, We adopted the pragmatic approach of utilizing 
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all measurements obtained from a large number of appropriately trained sonographers providing 

a routine clinical service rather than a small number of highly skilled specialists. Another 

strength is the systematic review of the literature that identified a large number of previously 

reported models for EFW, derived from fetal HC, BPD, AC and FL, individually or in combination 

and assessment of the accuracy of these models for the prediction of birthweight both in the 

whole study population and also in small and large babies. 

 

A potential limitation is the retrospective nature of the study which inevitably introduces bias in 

favor of high-risk pregnancies; this is for example reflected in the high proportion of babies with 

birthweight <2,500 g. However, the large sample size included a high number of appropriate, 

small and large fetuses to allow adequate assessment of the EFW models for such 

pregnancies. Although the precise performance of each model would vary with the 

characteristics of a given study population, our study allows comparison of the relative 

performance between the different models.  

 

Comparison with previous studies 

 

Studies describing new models often reported that their model was superior to previously 

published ones but this is an inevitable consequence of deriving and testing a model in the 

same population. In general, previous studies assessing the accuracy of different models for 

EFW in the prediction of birthweight reached the conclusion that either the most or among the 
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most accurate models were those reported by Hadlock et al.15 in all pregnancies but also in 

those with only small or only big babies.50-57  

 

There is controversy as to whether use of FL in models for EFW improves the accuracy of 

prediction of birthweight. 16,26,27,29 We found that the models providing the most accurate 

prediction included measurements of HC and / or BPD, as well as AC and FL. A small study 

investigating 43 SGA fetuses with abnormal umbilical artery Doppler that were born at <33 

weeks’ gestation, reported that although in symmetrical smallness models using FL were more 

accurate than those without, the opposite was true in the case of asymmetrical smallness.58 

 

Attempts at improving the prediction of birthweight by the addition of maternal characteristics, 

such as height, weight, parity, and racial origin, to fetal biometry59 have not been found to be 

successful.60 A study of over 9000 singleton pregnancies investigated the effect of maternal 

age, weight, height, parity, diabetes, fetal sex, presentation, amniotic fluid index and 

sonographer experience; it was concluded that although some of these factors had a significant 

effect on EFW, their contribution was small and of questionable clinical significance.61 There is 

some contradictory evidence that the precision of EFW can be improved by 3D ultrasound 

volumetry.62-64 Recent evidence suggests that EFW using MR imaging  may be more accurate 

that ultrasound in the prediction of both small and large for gestational age neonates.65,66 

Assessment of the value of 3D ultrasound and fetal MRI were beyond the scope of our study.  

 

Conclusions 
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Despite many efforts to develop new models for EFW, the one reported in 1985 by Hadlock et 

al,.15 from measurements of HC, AC and FL, provides the most accurate prediction of 

birthweight and can be used for assessment of all babies as well as those suspected to be 

either small or large.   
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Table 1: Characteristics of study population of 5,163 pregnancies. 

 

Characteristic Median (range) or n (%) 

Maternal age (y) 31 (16 to 52) 

Maternal height (m) 165 (122 to 198) 

Maternal weight (kg) 80 (43 to 175) 

Maternal racial origin  

- White 3,579 (69.3) 

- Black 1,104 (21.4) 

- South Asian 268 (5.2) 

- East Asian 62 (1.2) 

- Mixed 150 (2.9) 

Conception  

- Spontaneous 4,990 (96.6) 

- Assisted 173 (3.4) 

Cigarette smoker 630 (12.2) 

Parity  

- Nulliparous 2,503 (48.5) 

- Parous 2,660 (51.5) 

Gestational age (w)  

- At ultrasound 39.3 (22.3 to 43.3) 

- At delivery 39.4 (22.6 to 43.4) 

    <28 w 95 (1.8) 

    28-33+6 w 370 (7.2) 

    34-36+9 w 677 (13.1) 

    37-39+6 w 1,738 (33.7) 
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    ≥40 w 2,283 (44.2) 

Birthweight (g) 3,200 (440 to 5,688) 

   <2,500 g 1,148 (22.2) 

   2,500-3,999 g 3,404 (65.9) 

   ≥4,000 g 611 (11.8) 

Interval between ultrasound scan and delivery (d) 1 (0 to 2) 

Indication for delivery  

- Spontaneous 2,435 (47.2) 

- Iatrogenic 2,728 (52.8) 

  Preterm   

  - SGA, PE, PIH, or CH 521 (10.1) 

  - LGA, polyhydramnios DM or GDM 44 (0.9) 

  - Maternal medical condition or cholestasis 10 (0.2) 

  - Previa, accreta, vasa previa, abruption, or APH 45 (0.9) 

  - Poor obstetric history 4 (0.1) 

  - Red blood cell or platelet alloimmunization 19 (0.4) 

  - Reduced FM, abnormal Doppler or CTG 20 (0.4) 

  Term  

  - Breech or unstable lie 90 (1.7) 

  - SGA, PE, PIH, or CH 613 (11.9) 

  - LGA, polyhydramnios DM or GDM 253 (4.9) 

  - Maternal medical condition or cholestasis 70 (1.4) 

  - Maternal request, age, IVF, or previous CS 139 (2.7) 

  - Previa, accreta, vasa previa, abruption, or APH 33 (0.6) 

  - Poor obstetric history 29 (0.6) 

  - Red blood cell or platelet alloimmunization 6 (0.1) 
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  - Reduced FM, abnormal Doppler or CTG 269 (5.2) 

  Postdates 563 (10.9) 

 

SGA = small for gestational age; LGA = large for gestational age; PE = preeclampsia, PIH = pregnancy 

induced hypertension; CH = chronic hypertension; DM = diabetes mellitus; GDM = gestational diabetes 

mellitus; APH = antepartum hemorrhage; FM = fetal movements; CTG = cardiotocography.  
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Table 2. New formulas for estimated fetal weight developed in the study population from measurements of biparietal diameter (BPD), head 

circumference (HC), abdominal circumference (AC) and femur length (FL) using combinations of fractional polynomial terms. The models are 

compared for adjusted R2, residual standard deviation (SD), root mean square error (RMSE), mean percentage error (MPE), absolute mean error 

(AE), proportion of pregnancies with an AE <10% and Euclidean distance (ED).  

 

Model Adjusted R2 Residual SD RMSE MPE AE ≤10% ED 

Abdominal circumference (AC)        

2.22857 + (0.03754 * AC) 0.91 344.78 0.0516 0.76 8.94 68.84 10.99 

1.23636 + (0.10475 * AC) - (0.00111 * AC^2) 0.94 276.93 0.0428 0.34 7.36 77.48 8.58 

Femur length (FL)        

1.27801 +(0.43698 * FL) - (0.01792 * FL^2) 0.86 430.66 0.0629 -0.01 10.96 56.91 13.05 

3.76793 + (-0.82298*FL) + (0.18904*FL^2) - (0.01109*FL^3) 0.87 422.29 0.0618 0.18 10.78 56.87 12.98 

AC and FL        

1.34493 + (0.02431*AC) + (0.31364*FL) - (0.01779*FL^2) 0.95 258.89 0.0382 0.27 6.66 81.04 7.61 

1.33647 + (0.04951*AC) - (0.00038*AC^2) + (0.20222*FL) - (0.01014*FL^2) 0.95 255.66 0.0378 0.60 6.62 81.51 7.58 

Head circumference (HC) and AC        

1.16299 + (0.03706*HC) - (0.00033*HC^2) + (0.06305*AC) - (0.00057*AC^2) 0.95 258.43 0.0387 0.93 6.77 82.02 7.80 

1.35336 + (0.01600*HC) + (0.07192*AC) - (0.00071*AC^2) 0.95 258.64 0.0388 -0.34 6.70 82.43 7.61 

HC, AC, FL        
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1.21633 + (0.06076*HC) - (0.00075*HC^2) + (0.02107*AC) + (0.05261*FL) 0.95 247.40 0.0361 -0.66 6.29 84.65 7.12 

1.42482 + (0.01165*HC) + (0.03949*AC) - (0.00028*AC^2) + (0.14147*FL) - (0.00662*FL^2) 0.96 243.39 0.0357 -0.29 6.21 84.93 7.02 

Biparietal diameter (BPD) and AC        

0.98904 + (0.29764*BPD) - (0.01347*BPD^2) + (0.02677*AC) 0.94 266.93 0.0399 0.87 6.95 80.77 8.05 

1.10450 + (0.14816*BPD) - (0.00574*BPD^2) + (0.06410*AC) - (0.00057*AC^2) 0.95 256.68 0.0388 0.92 6.74 81.92 7.78 

BPD, AC and FL        

1.27303 + (0.20358*BPD) - (0.00912*BPD^2) + (0.02168*AC) + (0.05366*FL) 0.96 247.49 0.0363 0.50 6.33 85.53 7.23 

1.31192 + (0.08652*BPD) - (0.00300*BPD^2) + (0.03839*AC) - (0.00025*AC^2) + (0.12769*FL) - (0.00559*FL^2) 0.96 242.33 0.0358 0.41 6.22 85.71 7.05 

BPD, HC, AC and FL        

1.87409 + (0.01783*BPD) + (0.01088*HC) + (0.02000*AC) + (0.05837*FL) 0.95 257.08 0.0369 0.50 6.51 82.99 7.57 

1.43237 + (0.01660*BPD) + (0.00745*HC) + (0.03876*AC) + (0.14005*FL) - (0.00027*AC^2) - (0.00663*FL^2) 0.96 240.71 0.0354 0.16 6.17 85.39 6.97 

BPD, HC, AC, FL and GA        

1.85735 + (0.01583*BPD) + (0.01028*HC) + (0.01966*AC) + (0.04836*FL) + (0.00051*GA) 0.95 252.47 0.0365 0.69 5.98 83.31 7.52 

1.542676 + (0.014694*BPD) + (0.007436*HC) + (0.037447*AC) + (-0.000257*AC^2) + (0.169354*FL) + (-

0.009406*FL^2) + (-0.001519*GA) + (0.000004*GA^2) 
0.96 243.02 0.0350 3.43 6.39 80.44 8.02 

 

In each section the second of the two models was considered to be superior and was analyzed further in Table 4 

This article is protected by copyright. All rights reserved.



 

  

Table 3. Articles reporting formulas for estimated fetal weight (EFW) derived from various combinations of ultrasonographic 

measurements of fetal head circumference (HC), biparietal diameter (BPD), femur length (FL) and abdominal circumference (AC). 

The interval in days is between the gestational age at ultrasound examination and birth. 

 

Footnote: 

GA = gestational age, DM = diabetes mellitus, GDM = gestational diabetes mellitus. 

Please not that some models were specifically developed for the assessment of large or small fetuses; these are indicated by the 

note (large) or(small) after the author in the first column. 

  

This article is protected by copyright. All rights reserved.



 

  

 

Author N Population GA (w) Interval (d) Biometry EFW Formula for EFW 

BPD 
       

Willocks et al., 19641 152 Unselected NR ≤7 cm g (-177 + 30 * BPD) * 28,3495 

Thompson et al., 19653 85 Unselected >28 ≤1 cm g -6575 + 1060 * BPD 

Kohorn et al., 19674 89 Unselected >28 ≤7 cm g -2569 + 613 * BPD 

Hellman et al., 19675 164 Unselected 24-40 NR cm g -3973.8 + 772.2 * BPD 

AC        

Campbell et al., 19756 140 Unselected 32-38 ≤2 cm kg Exp (- 4.564 + 0.282 * AC - 0.00331 * AC^2) 

Higginbottom et al., 19757 50 Unselected NR ≤2 cm g 0.0816 * AC^3 

Warsof et al., 19778 85 Unselected 17-41 ≤2 cm kg 10^(-1.8367 + 0.092 * AC - 0.019 * AC^3 / 1000) 

Jordaan, 19839 98 Unselected 26-41 ≤3 cm g 10^(0.6328 + 0.1881 * AC - 0.0043 * AC^2 + 0,000036239 * AC^3) 

Hadlock et al., 198410 167 Unselected NR ≤7 cm g Exp (2.695 + 0.253 * AC - 0.00275 * AC^2) 

Hill  et al., 198511 103 Unselected 25-40 ≤3 cm g -2883.6 + 181.39 * AC 

Merz et al., 198812 167 BW 2000 - 4520 g 24-42 <7 cm g 0.1 * AC^3 

Pedersen et al., 1992 (large)13 43 DM or GDM NR ≤2 cm g Exp (1.4146 + 0.3371 * AC - 0.004082 * AC^2) 

FL 
       

Warsof et al., 19778 85 Unselected 17-41 ≤2 cm kg Exp (4.6914 + 0.151 * FL^2 - 0.0119 * FL^3) 

Honarvar et al., 200114 900 Unselected 25-40 ≤3 cm kg -1.36 + 0.042 * FL^2 + 0.32 * FL 

AC, FL 
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Hadlock et al., 198515 276 Unselected NR ≤7 cm g 10^(1.304 + 0.05281 * AC + 0.1938 * FL - 0.004 * AC * FL) 

Woo et al., 198516 125 Unselected 25-42 ≤7 cm g 10^(0.59 + 0.08 * AC + 0.28 * FL - 0.00716 * AC * FL) 

Warsof  et al., 198617 101 Unselected 22-43 ≤3 cm, mm kg Exp (2.792 + 0.108 * FL + 0.0036 * AC^2 - 0.0027 * FL* AC) 

Ferrero et al., 199418 93 Unselected NR ≤7 cm g 
10^(0.77125 + 0.13244 * AC - 0.12996 * FL - 1.73588 * AC^2 / 1000 + 3.09212 * FL * AC / 

1000 + 2.18984 * FL / AC) 

Ben-Haroush et al., 200819 5449 Unselected 24-42 ≤7 mm g 10^(-2.543 + 1.747 * LogAC + 0.876 * LogFL) 

Akhtar et al., 201020 66 Unselected 37-42 ≤4 cm g 10^(-3.548 + 0.204 * AC + 0.935 * FL - 0.027 * AC * FL) 

BPD, AC 
       

Warsof et al., 19778 85 Unselected 17-41 ≤2 cm kg 10^(-1.599 + 0.144 * BPD + 0.032 * AC - 0.000111 * AC * BPD^2) 

Shepard et al., 198221 73 Unselected 17-41 ≤2 cm kg 10^(1.2508 + 0.166 * BPD + 0.046 * AC - 0.002646 * AC * BPD) 

Jordaan, 19839 98 Unselected 26-41 ≤3 cm kg 10^(-1.1683 + 0.0377 * AC + 0.0950 * BPD - 0.0015 * BPD *AC) 

Thurnau et al., 1983 (small)22 62 BW <2500 g 26-36 ≤7 cm g - 229 + 9.337 * BPD * AC 

Hadlock et al., 198410 167 Unselected NR ≤7 cm g 
10^(1.1134 + 0.05845 * AC - 0.000604 * AC^2 - 0.007365 * BPD^2 + 0.000595 * BPD * AC + 

0.1694 * BPD) 

Weinberger et al.,1984 (small)23 41 BW ≤2000 g NR ≤7 cm g – 481 + 10.1 * AC * BPD 

Campbell et al.,198524 85 Preterm 23-36 ≤7 cm g 10^(-1.8131 + 0.1630 * BPD + 0.048 * AC - 0.002447 * AC * BPD) 

Tamura et al., 1985 (large)25 34 BW ≥3500 g 36-41 ≤7 cm g 10^(1.2659 + 0.02597 * AC + 0.2161 * BPD - 0.1999 * AC * BPD^2 / 1000) 

Woo et al., 198516 125 Unselected 25-42 ≤2 cm g 10^(1.63 + 0.16 * BPD + 0.00111 * AC^2 - 0.0000859 * BPD * AC^2) 

Woo et al., 198626 98 Unselected 25-42 ≤2 cm g – 1480 + 15.2 * BPD * AC 

Merz et al., 198812 167 BW 2000 - 4520 g 24-42 <7 cm g -3200.40479 + 157.07186 * AC + 15.90391 * BPD^2 
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Hsieh et al., 198727 86 Unselected NR ≤5 cm g 
10^(2.1315 + 0.0056541 *AC *BPD – 0.00015515 * AC^2 *BPD +0.000019782 * AC^3 

+0.052594 * BPD) 

Vintzileos et al., 198728 89 Unselected 24-42 ≤3 cm g 10^(1.879 + 0.084 * BPD + 0.026 * AC) 

Akhtar et al., 201020 66 Unselected 37-42 ≤4 cm g 10^(0.949 + 0.056 * BPD + 0.099 * AC - 0.001 * AC^2) 

HC, AC 
       

Jordaan, 19839 98 Unselected 26-41 ≤3 cm g 10^(0.9119 + 0.0488 * HC + 0.0824 * AC - 0.001599 * HC * AC) 

Hadlock et al., 198410 167 Unselected NR ≤7 cm g 10^(1.182 + 0.0273 * HC + 0.07057 * AC - 0.00063 * AC^2 - 0.0002184 * HC * AC) 

Weiner et al., 1985 (small)29 33 BW ≤2340 g ≤34 ≤2 cm g 10^(1.6575 + 0.04035 * HC + 0.01285 * AC) 

Stirnemann et al., 201730 2404 Unselected 22-40 ≤14 cm g 
Exp (5.084820 - 54.06633 * (AC/100)^3 - 95.80076 * (AC/100)^3 * Ln(AC/100) + 3.136370 * 

HC / 100) 

BPD, AC, FL 
       

Hadlock et al., 198515 276 Unselected NR ≤7 cm g 10^(1.335 + 0.0316 * BPD + 0.0457 * AC + 0.1623 * FL - 0.0034 * AC * FL) 

Woo et al., 198516 125 Unselected 25-42 ≤2 cm g 
10^(1.54 + 0.15 * BPD + 0.00111 * AC^2 - 0.0000764 * BPD * AC^2 + 0.05 * FL - 0.000992 * 

FL * AC) 

Hill et al., 198631 103 Unselected 25-40 ≤3 cm g Exp (-4.7208 + 1.1933 * BPD - 0.0613 * FL * BPD + 5.9509 * FL / BPD + 0.3339  AC / BPD) 

Woo et al., 198626 98 Unselected 25-42 ≤2 cm g – 200 + 1.4 * BPD * AC * FL 

Benson et al., 1987 (large)32 80 DM or GDM NR <7 cm kg 10^(-2.08 - 0.00638 * AC * FL + 0.00265 * BPD^2 + 0.0623 * AC + 0.255 * FL) 

Hsieh et al., 198727 86 Unselected NR ≤5 cm g 
10^(2.7193 + 0.0094962 * AC * BPD - 0.1432 * FL - 0.00076742 * AC * BPD^2 + 0.001745 * 

FL * BPD^2) 

Shinozuka et al., 1987 (small)33 657 Unselected 21-41 <7 cm g 0.23966 * FL * AC^2 + 1.6230 * BPD^3 

This article is protected by copyright. All rights reserved.



 

  

Nzeh et al., 199234 104 Unselected 37-42 <15 cm g 10^(0.47 + 0.488 * LogBPD + 0.554 * LogFL + 1,377 * LogAC) 

Halaska et al., 200635 86 Unselected >37 ≤11 cm g 10^(0.64041 * BPD - 0.03257 * BPD^2 + 0.00154 * AC * FL) 

Ben-Haroush et al., 200819 5137 Unselected 24-42 ≤7 mm g 10^(-2.804 + 0.629 * LogBPD + 1.572 * LogAC + 0.59 * LogFL) 

Siemer et al., 2009 (small)36 130 BW <2500 g 21-41 ≤7 cm g -5948.336 + 2101.261 * LnAC + 15.613 * FL^2 + 0.577 * BPD^3 

Akhtar et al., 201012 66 Unselected 37-42 ≤4 cm g 10^(-2.213 + 0,147 * AC + 0.088 * BPD + 0.652 * FL - 0.020 * AC * FL) 

Kehl et al., 2012 (small) 37 215 AC ≤ 29cm 22-41 ≤7 cm g 10^(1.766 + 0.026 * AC + 0.081 * FL + 0.038 * BPD) 

HC, AC, FL 
       

Hadlock et al., 198515 276 Unselected NR <7 cm g 10^(1.326 – 0.00326 * AC * FL + 0.0107 * HC + 0.0438 * AC + 0.158 * FL) 

Weiner et al., 1985 (small)29 33 BW ≤2340 g ≤34 ≤2 cm g 10^(1.6961 + 0.02253 * HC + 0.01645 * AC + 0.06439 * FL) 

Ott et al., 198638 464 Unselected 20-43 ≤3 cm kg 10^(-2.0661 +  0.04355 * HC + 0.05394 * AC – 0.0008582 * HC * AC + 1.2594 * FL / AC) 

Combs et al., 199339 380 Unselected NR ≤3 cm g 0.23718 * FL * AC^2 + 0.03312 * HC^3 

Dudley, 199540 388 Unselected NR ≤10 cm g 0.32 * AC^2 * FL + 0.053 * HC^2 * FL 

Scott et al., 1996 (small)41 142 BW <1000 g NR ≤7 cm g 10^(0.66 * LogHC + 1.04 * LogAC + 0.985 * LogFL) 

Schild et al., 2004 (small)42 84 BW ≤1600 g 21-37 ≤7 cm g 5381.193 + 150.324 * HC + 2.069 * FL^3 + 0.0232 * AC^3 - 6235,478 * LogHC 

BPD, HC, AC, FL 
       

Hadlock et al.,198515 276 Unselected NR ≤7 cm g 
10^(1.3596 + 0.0064 * HC + 0.0424 * AC + 0.174 * FL + 0.00061 * BPD * AC - 0.00386 * AC * 

FL) 

Roberts et al., 1985 (small)43 50 BW <2400 g <37 ≤2 cm g 10^(1.6758 + 0.01707 * AC + 0.042478 * BPD + 0.05216 * FL + 0.01604 * HC) 

Ben-Haroush et al., 200819 5083 Unselected 24-42 <7 mm g 10^(-2.869 + 0.585 * LogBPD + 1.562 * LogAC + 0.077 * LogHC + 0,581 * LogFL) 

Chen et al., 201144 1034 Unselected 26-43 ≤3 cm g 10^(0.18 * HC + 0.00628 * AC - 0.00318 * HC^2 + 0.00173 * AC * FL + 0.0000430 * BPD * 
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HC^2) 

Chen et al., 2011 (small)44 262 BW <2500 g 26-41 ≤3 cm g Exp (1.47 * BPD + 0.0169 * HC – 0.0873 * BPD^2 + 0.00518 * AC * FL) 

Chen et al., 2011 (large)44 120 BW >4000 g 37-42 ≤3 cm g 10^(0.730 * BPD - 0.0375 * BPD^2 + 0.000264 * AC * FL) 

Souka et al., 201445 1407 Unselected 30-40 ≤7 mm g -3466.586 + 14.43568 * BPD + 3.167604 * HC + 29.2856 * FL + 192.3903 * (AC/100)^2 

Souka et al., 2014 (large)45 1407 Unselected 30-40 ≤7 mm g -5569.561 + 5.0013 *HC + 12.74294 * AC + 42.52311 *FL 

Souka et al., 2014 (small)45 1407 Unselected 30-40 ≤7 mm g 
-3900.726+5.538388 * HC + 368.0494 * (AC/100)^3-242.061 * (AC/100)^3 * 

Ln(AC/100)+26.1955 *FL 

BPD, HC, AC, FL, GA 
       

Sabbagha et al., 198946 194 AC 5th to 95th 24-41 ≤7 cm g -55.3 - 16.35 * (GA + HC + 2 * AC + FL) + 0.25838 * (GA + HC + 2 * AC + FL)^2 

Sabbagha et al., 1989 (large)46 194 AC >95th 24-41 ≤7 cm g 5426.9 - 94.98 * (GA + HC + 2 * AC + FL) + 0.54262 * (GA + HC + 2 * AC + FL)^2 

Sabbagha et al., 1989 (small)46 194 AC <5th 24-41 ≤7 cm g 1849.4 - 47.13 * (GA + HC + 2 * AC + FL) + 0.37721 * (GA + HC + 2 * AC + FL)^2 
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Table 4. Performance of models for estimated fetal weight in the prediction of birthweight reported in the 

literature and those developed in this study. The models are compared for mean percentage error (MPE), 

absolute mean error (AE), proportion of pregnancies with an AE <10% and Euclidean distance (ED).  

 

Author 
All pregnancies BW <2,500 g BW >4,000 g 

MPE (%) AE (%) ≤10% ED ≤10% ED ≤10% ED 

BPD         

Willocks et al., 19641 -3.2 (-42.9 to 36.6) 14.3 (14.7) 44.6 20.5 25.0 35.0 13.1 20.9 

Thompson et al., 19653 8.7 (-43.2 to 60.6) 17.9 (21.3) 41 27.9 11.9 51.4 59.1 12.2 

Kohorn et al., 19674 9 (-41.3 to 59.3) 18 (20.3) 43.6 27.2 2.8 52.7 12.8 18.5 

Hellman et al., 19675 9.7 (-32.5 to 51.8) 16.6 (16.8) 45 23.6 6.4 43.7 34.7 15.2 

AC         

Campbell et al., 19756 1.4 (-18 to 20.9) 7.8 (6.3) 70.0 10.0 50.9 14.1 52.7 11.2 

Higginbottom et al., 19757 -1.9 (-23.7 to 19.9) 9.0 (6.8) 63.2 11.3 53.1 13.4 65.6 10.6 

Warsof et al., 19778 8.0 (-8 to 23.9) 10.0 (5.4) 48.3 11.4 8.6 15.4 75.3 9.4 

Jordaan, 19839 -3.9 (-27.4 to 19.5) 10.1 (7.5) 56.1 12.6 49.7 16.4 9.7 17.8 

Hadlock et al., 198410 2.7 (-16 to 21.4) 7.8 (6.2) 70.1 9.9 53.7 13.2 78.4 8.1 

Hill  et al., 198511 2.2 (-19.8 to 24.2) 8.5 (7.7) 68.2 11.4 39.1 18.7 59.1 10.5 

Merz et al., 198812 20.2 (-6.5 to 47) 21.0 (12.4) 21.7 24.4 36.1 19.8 14.6 26.6 

Pedersen et al., 1992 (large)13 5.1 (-15.4 to 25.6) 9.2 (7.2) 63.2 11.6 44.9 15.8 81.5 7.6 

This study 0.3 (-18 to 18.6) 7.4 (5.7) 72.5 9.3 60.8 11.9 70.2 9.3 

FL         

Warsof et al., 19778 2.0 (-26.7 to 30.7) 11.4 (9.4) 53.0 14.8 34.6 21.7 14.7 17.7 

Honarvar et al., 200114 1.5 (-30.6 to 33.7) 12.6 (10.6) 49.5 16.5 21.7 26.3 10.1 19.6 

This study 0.2 (-26.9 to 27.3) 10.8 (8.7) 55.5 13.8 47.1 17.7 27.5 16.9 

AC, FL         

Hadlock et al., 198515 1.9 (-14.6 to 18.4) 6.9 (5.2) 75.7 8.6 67.5 10.0 79.9 7.7 

Woo et al., 198516 13.9 (-8.4 to 36.3) 15.5 (9.2) 31.9 18.0 40.1 17.2 45.5 14.1 
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Warsof  et al., 198617 6.4 (-12.3 to 25.2) 9.0 (7.2) 63.5 11.5 45.6 15.6 75.9 9.0 

Ferrero et al., 199418 9.5 (-9 to 28) 10.9 (7.8) 52.8 13.4 39.0 17.0 91.5 5.8 

Ben-Haroush et al., 200819 0.7 (-16.4 to 17.8) 6.9 (5.4) 76.0 8.7 62.7 11.6 66.3 9.4 

Akhtar et al., 201020 -5.7 (-40.8 to 29.5) 13.1 (13.5) 52.0 18.8 31.2 31.8 0.8 24.5 

This study 0.6 (-15.6 to 16.8) 6.6 (5) 77.2 8.3 69.8 9.6 74.5 8.5 

BPD, AC         

Warsof et al., 19778 2.3 (-15.8 to 20.4) 7.4 (5.9) 72.5 9.5 64.1 11.8 77.3 8.4 

Shepard et al., 198221 7.5 (-11.8 to 26.9) 9.8 (7.6) 58.6 12.4 45.4 15.7 75.0 9.0 

Jordaan, 19839 7.7 (-13.5 to 28.9) 9.9 (8.8) 61.5 13.3 28.0 21.9 81.2 7.8 

Thurnau et al., 1983 (small)22 -10.0 (-35.9 to 15.9) 14.3 (8.3) 32.0 16.6 60.5 15.8 0.5 24.4 

Hadlock et al., 198410 7.0 (-10.7 to 24.8) 9.1 (6.9) 62.4 11.5 47.1 15.0 84.6 7.3 

Weinberger et al.,1984 (small)23 -11.4 (-32.2 to 9.4) 13.6 (7.6) 34.2 15.6 73.4 10.2 0.7 23.7 

Campbell et al.,198524 16.8 (6.1 to 39.7) 17.5 (10.6) 27.1 20.4 37.3 19.0 29.3 19.9 

Tamura et al., 1985 (large)25 23.1 (-9.1 to 55.3) 23.5 (15.8) 20.7 28.3 2.4 44.6 76.8 8.4 

Woo et al., 198516 -3.1 (-20.7 to 14.5) 7.6 (5.7) 71.3 9.5 69.2 11.0 46.0 12.4 

Woo et al., 198626 5.1 (-20.5 to 30.6) 9.9 (9.9) 61.8 14.0 36.5 23.2 82.5 7.5 

Merz et al., 198812 10.5 (-15 to 36) 12.9 (10.6) 46.3 16.7 15.8 27.0 90.5 6.1 

Hsieh et al., 198727 7.3 (-12.5 to 27.1) 9.7 (7.9) 60.6 12.5 36.2 18.2 76.6 8.7 

Vintzileos et al., 198728 13.8 (-8.8 to 36.5) 14.8 (10.3) 37.0 18.0 40.3 17.3 35.4 19.6 

Akhtar et al., 201020 47.7 (12.6 to 82.8) 47.9 (17.4) 3.0 50.9 12.7 38.8 0 53.2 

This study 0.9 (-15.7 to 17.5) 6.7 (5.2) 76.8 8.5 69.2 10.4 74.6 8.3 

HC, AC         

Jordaan, 19839 5.7 (-15.4 to 26.9) 9.4 (7.8) 62.0 12.2 35.5 18.2 73.5 8.9 

Hadlock et al., 198410 0.6 (-16.2 to 17.5) 6.8 (5.2) 75.9 8.6 67.3 10.6 66.4 9.4 

Weiner et al., 1985 (small)29 -14.2 (-32.8 to 4.3) 15.0 (8.1) 29.5 17.1 49.2 13.0 13.4 21.2 

Stirnemann et al., 201730 -3.3 (19.5 to 12.9) 7.2 (5.3) 73.2 8.9 66.7 10.0 55.6 11.0 

This study -0.3 (-16.7 to 16.1) 6.7 (5) 77.2 8.4 71.5 9.8 69.1 9.2 

BPD, AC, FL         

Hadlock et al.. 198515 4.3 (-11.6 to 20.2) 7.3 (5.5) 73.3 9.2 64.2 10.8 84.9 7.1 
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Woo et al.. 198516 5.1 (-12.8 to 23) 8.2 (6.5) 68.5 10.4 49.2 14.5 83.6 7.1 

Hill et al.. 198631 5.4 (-15.9 to 26.8) 9.3 (7.9) 63.1 12.2 39.0 17.4 78.9 8.2 

Woo et al.. 198626 -4.9 (-21.5 to 11.7) 7.7 (6) 69.5 9.8 65.9 11.4 38.8 13.5 

Benson et al.. 1987 (large)32 10.1 (-8.4 to 28.7) 11.5 (7.8) 48.5 13.9 38.7 17.1 85.3 7.2 

Hsieh et al.. 198727 7.5 (-13.1 to 28.2) 9.8 (8.4) 60.3 12.9 39.9 19.7 82.8 7.6 

Shinozuka et al.. 1987 (small)33 7.0 (-12.1 to 26.1) 9.4 (7.6) 61.9 12.0 29.5 18.6 83.6 7.3 

Nzeh et al.. 199234 8.1 (-14.6 to 30.8) 10.4 (9.5) 60.5 14.1 12.9 25.1 81.8 7.2 

Halaska et al.. 200635 4.7 (-20 to 29.4) 10.0 (9) 61.8 10.5 19.3 23.3 46.3 12.1 

Ben-Haroush et al.. 200819 2.8 (-13.9 to 19.4) 7.0 (5.6) 75.6 8.9 54.1 12.9 74.6 8.1 

Siemer et al., 2009 (small)36 -11.1 (-35 to 12.8) 14.3 (8.2) 32.7 16.5 66.6 11.8 0.0 26.9 

Akhtar et al., 201012 -21.2 (-48.5 to 6.1) 21.7 (13.2) 19.4 25.4 40.5 28.2 0.3 37.1 

Kehl et al., 2012 (small) 37 21.9 (-4 to 47.8) 22.2 (12.6) 19.1 25.6 45.7 16.8 8.5 30 

This study 0.4 (-14.8 to 15.6) 6.2 (4.7) 80.3 7.8 75.4 8.9 75.0 8.2 

HC, AC, FL         

Hadlock et al., 198515 0.7 (-14.5 to 16) 6.3 (4.7) 79.9 7.8 72.8 9.1 76.4 8.2 

Weiner et al., 1985 (small)29 -8.1 (-23.5 to 7.2) 9.5 (6.2) 57.0 11.3 57.4 11.1 45.7 13.3 

Ott et al., 198638 2.1 (-14.3 to 18.6) 6.8 (5.3) 76.4 8.7 57.1 12.1 72.0 8.6 

Combs et al., 199339 0.6 (-16.9 to 18.1) 7.0 (5.5) 74.7 9.0 54.0 12.7 56.8 10.6 

Dudley, 199540 -4.0 (-19.1 to 11.1) 7.1 (5) 73.7 8.7 75.2 8.7 53.8 11.1 

Scott et al., 1996 (small)41 -12.3 (-29.6 to 5) 13.3 (7.2) 34.7 15.1 77.8 8.3 0.7 23.2 

Schild et al., 2004 (small)42 -18.1 (-33.9 to -2.2) 18.3 (7.5) 14.5 19.8 51.5 11.7 0 27.4 

This study -0.3 (-15.4 to 14.8) 6.2 (4.6) 80.3 7.7 75.8 8.5 72.2 8.7 

BPD, HC, AC, FL         

Hadlock et al.,198515 2.7 (-12.8 to 18.1) 6.7 (5) 77.7 8.3 69.8 9.8 82.8 7.4 

Roberts et al., 1985 (small)43 15.3 (-5.9 to 36.5) 15.9 (9.9) 31.6 18.8 41.6 16.5 35.7 18.8 

Ben-Haroush et al., 200819 2.8 (-13.8 to 19.4) 6.9 (5.6) 75.6 8.9 53.8 12.9 74.8 8.1 

Chen et al., 201144 12.9 (-6 to 31.7) 13.6 (8.5) 38.1 16.1 26.0 19.5 66.0 10.7 

Chen et al., 2011 (small)44 -12.6 (-39.4 to 14.2) 15.7 (10.1) 33.4 18.6 66.0 11.4 0.7 29.3 

Chen et al., 2011 (large)44 35.6 (-27.7 to 98.9) 36.5 (31.3) 18.4 48.0 0 87.9 89.4 6.3 
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Souka et al., 201445 0.2 (-30.6 to 30.9) 8.5 (13.2) 73.9 15.7 46.8 30.3 71.4 8.7 

Souka et al., 2014 (large)45 4.5 (-40.1 to 49.1) 12.3 (19.7) 57.4 23.2 30.8 45.1 89.4 6.2 

Souka et al., 2014 (small)45 -19.4 (-60 to 21.3) 21.1 (19) 27.7 28.4 66.9 36.9 0 41.9 

This study 0.2 (-14.9 to 15.2) 6.2 (4.6) 80.4 7.7 75.2 8.6 74.3 8.3 

BPD, HC, AC, FL, GA         

Sabbagha et al., 198946 -1.3 (-18.7 to 16.1) 7.1 (5.5) 74.9 9.0 62.8 11.7 41.1 12.4 

Sabbagha et al., 1989 (large)46 4.3 (-28.7 to 37.2) 9.4 (14.5) 71.5 17.3 36.3 34.0 64.8 9.6 

Sabbagha et al., 1989 (small)46 -2.8 (-18.8 to 13.3) 6.9 (5.1) 75.4 8.6 73.2 9.4 44.5 12.4 

This study  0.6 (-15.2 to 16.4) 6.5 (4.9) 79.0 8.1 76.3 8.9 77.6 8.2 

Two stage screening         

Hadlock (HC, AC, FL),15 Scott (HC, AC, 

FL),41 Ferrero (AC, FL).18 
0.2 (-16.1 to 16.5) 6.5 (5) 77.3 8.3 70.5 9.4 77.1 8.2 

 

 

Figure legends 

 

Figure 1: Selection tree for included articles. 

 

Figure 2: Association between estimated fetal weight. derived from the model of Hadlock et al 

using the measurements of head circumference. abdominal circumference and femur length.15 

and birthweight in the study population (r=0.959; p<0.0001). 
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