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CONTRIBUTION

What are the novel findings of this work?
This study describes a new competing-risks model
based on a combination of maternal characteristics
and medical history with serum pregnancy-associated
plasma protein-A (PAPP-A) at 11–13 weeks’ gestation for
prediction of a small-for-gestational-age (SGA) neonate.
PAPP-A likelihood was expressed as a continuous function
of both gestational age at delivery and birth-weight
Z-score in the same model.

What are the clinical implications of this work?
Addition of serum PAPP-A improves the performance
of screening for a SGA neonate achieved by maternal
factors alone and demonstrates the methodology for
incorporation of further biomarkers into a single model
that can be used numerous times during the course of
pregnancy to predict SGA of any severity of smallness
and degree of prematurity.

ABSTRACT

Objectives To develop a continuous likelihood model for
pregnancy-associated plasma protein-A (PAPP-A), in the
context of a new competing-risks model for prediction of a
small-for-gestational-age (SGA) neonate, and to compare
the predictive performance of the new model for SGA to
that of previous methods.

Methods This was a prospective observational study
of 60 875 women with singleton pregnancy undergoing
routine ultrasound examination at 11 + 0 to 13 + 6 weeks’
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gestation. The dataset was divided randomly into a
training dataset and a test dataset. The training dataset
was used for PAPP-A likelihood model development.
We used Bayes’ theorem to combine the previously
developed prior model for the joint Gaussian distribution
of gestational age (GA) at delivery and birth-weight
Z-score with the PAPP-A likelihood to obtain a
posterior distribution. This patient-specific posterior joint
Gaussian distribution of GA at delivery and birth-weight
Z-score allows risk calculation for SGA defined in
terms of different birth-weight percentiles and GA.
The new model was validated internally in the test
dataset and we compared its predictive performance
to that of the risk-scoring system of the UK National
Institute for Health and Care Excellence (NICE) and
that of logistic regression models for different SGA
definitions.

Results PAPP-A has a continuous association with both
birth-weight Z-score and GA at delivery according to
a folded-plane regression. The new model, with the
addition of PAPP-A, was equal or superior to several
logistic regression models. The new model performed
well in terms of risk calibration and consistency across
different GAs and birth-weight percentiles. In the test
dataset, at a false-positive rate of about 30% using the
criteria defined by NICE, the new model predicted 62.7%,
66.5%, 68.1% and 75.3% of cases of a SGA neonate with
birth weight < 10th percentile delivered at < 42, < 37,
< 34 and < 30 weeks’ gestation, respectively, which were
significantly higher than the respective values of 46.7%,
55.0%, 55.9% and 52.8% achieved by application of the
NICE guidelines.
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Conclusions Using Bayes’ theorem to combine PAPP-A
measurement data with maternal characteristics improves
the prediction of SGA and performs better than logistic
regression or NICE guidelines, in the context of a
new competing-risks model for the joint distribution
of birth-weight Z-score and GA at delivery. © 2020
International Society of Ultrasound in Obstetrics and
Gynecology

INTRODUCTION

Small-for-gestational-age (SGA) neonates are at increased
risk of adverse perinatal outcome and development of
metabolic and cardiovascular diseases in adult life1–5. The
monitoring and the decision for delivery of pregnancies
suspected for SGA is the subject of guidelines issued
by relevant national societies6. The optimal way to
identify SGA fetuses is debatable7. The mainstream
approach is to recognize a high-risk group for SGA
by application of a scoring system. For example,
in the UK, according to guidelines of the National
Institute for Health and Care Excellence (NICE), women
should be considered to be at high risk if they have
any one major risk factor or any three minor risk
factors8. The major risk factors include maternal age
> 40 years, smoking, previous SGA baby or stillbirth,
chronic hypertension, diabetes with vascular disease,
renal impairment, antiphospholipid syndrome and serum
pregnancy-associated plasma protein-A (PAPP-A) < 0.4
multiples of the median (MoM). Minor risk factors
include nulliparity, maternal age ≥ 35 years, body
mass index < 20 or 25–34.9 kg/m2, conception by
in-vitro fertilization, previous pre-eclampsia (PE) and
interpregnancy interval < 6 or ≥ 60 months. Although
this approach is relatively simple to perform, it does
not provide patient-specific risks and has uncertain
performance in predicting a SGA neonate. Another
approach is to use probabilistic models treating SGA
as a binary outcome and applying logistic regression to
develop different models for different definitions of SGA,
such as birth weight < 10th, < 5th or < 3rd percentile born
at < 40 or < 37 or < 34 weeks’ gestation. These models
use maternal characteristics and medical history alone or
in combination with biomarkers to quantify the individual
patient-specific risk for SGA, rather than just classifying
women into high- and low-risk groups9–12. However,
each time we want to predict a different SGA definition
and/or add a new biomarker, the whole model must be
refitted.

We have demonstrated an alternative method for
prediction of SGA, similar to the competing-risks model in
the assessment of the risk for PE13–16. This new method
is based on a continuous personalized joint bivariate
Gaussian distribution of gestational age (GA) at delivery
and Z-score of birth weight, that allows risk calculation
for any desired SGA definition17. An important merit of
the new model is the ability to easily include biomarkers,
according to Bayes’ rule.

The objective of this study was to expand a new
continuous history model for the prediction of a SGA
neonate, with the Bayesian incorporation of PAPP-A. We
assessed the predictive performance of the new model and
we compared it with logistic regression models and the
application of NICE guidelines.

METHODS

Study population and design

This was a prospective screening study for adverse
obstetric outcomes in women attending for their routine
first hospital visit in pregnancy at King’s College Hospital,
London and Medway Maritime Hospital, Gillingham,
UK, between March 2006 and December 2016. At this
visit, at 11 + 0 to 13 + 6 weeks’ gestation, we recorded
maternal characteristics and medical history, performed
combined screening for aneuploidy18 and measured serum
concentration of PAPP-A (DELFIA® Xpress system,
PerkinElmer Life and Analytical Sciences, Waltham,
MA, USA). GA was determined by the measurement
of fetal crown–rump length19. The participants gave
written informed consent for the study, which was
approved by the UK National Health Service Research
Ethics Committee. We included singleton pregnancies that
resulted in a non-malformed liveborn or stillborn neonate
at ≥ 24 weeks’ gestation. Pregnancies with aneuploidy and
major fetal abnormality and those ending in termination,
miscarriage or fetal death at < 24 weeks’ gestation, were
excluded from the dataset.

Outcome measures

Data on pregnancy outcome were collected from hospital
maternity records or the general medical practitioners
of the women. The outcome measures of the study
were birth of a neonate at or below different thresholds
of birth-weight percentile for different cut-offs of GA
at delivery. The Fetal Medicine Foundation fetal and
neonatal population weight charts were used to convert
birth weight to percentiles and Z-scores20.

Statistical analysis

We converted serum concentrations of PAPP-A to MoM
values, as described previously18.

Model development

The new model is based on a personalized joint
distribution of GA at delivery and birth-weight Z-score.
The two elements that defined this distribution were, first,
the prior distribution determined by maternal factors and,
second, the likelihood of the biomarker values. The prior
distribution was obtained using the history model, as
described previously17. We expressed log10 PAPP-A MoM
likelihood conditionally to birth weight and GA at
delivery. We adopted a two-dimensional extension of the
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broken-stick regression, a folded-plane regression. The
mean log10 PAPP-A MoM was a linear combination of
birth-weight Z-score and GA at delivery, until it reaches
zero level, and beyond a break line the mean was presumed
to be constant and equal to zero. We used Bayes’ rule to
combine the prior and the likelihood to obtain a posterior
joint distribution for each pregnancy, that can be used
to compute risks for different cut-offs of birth-weight
Z-score and GA at delivery. Residual diagnostics were
used to assess the fit of the model.

Training and test datasets

Data were partitioned randomly into a training dataset
of 30 438 cases and a test dataset of 30 437 cases. The
training data were used for model fitting and the model
was then assessed on the test dataset for the purpose of
internal validation.

Predictive performance

We examined the predictive performance of the new
model by means of detection rate (DR) of a SGA neonate
of different severities (< 10th and < 3rd percentiles) at
different gestational age cut-offs (< 42, < 37, < 34 and
< 30 weeks), at fixed false-positive rates (FPR) of 5%,
10% and 20%. Calibration intercept and slope using
logistic regression analysis of outcome incidence against
the logit of the respective risks were computed.

Comparison with previous definitions of SGA
and logistic regression models

A series of logistic regression models to predict SGA
(< 10th and < 3rd percentiles for GA at birth < 42, < 37,
< 34 and < 30 weeks) were fitted and validated in the test
dataset.

Comparison of performance of new model with that
of NICE guidelines

We obtained the risk cut-off that gave the same FPR as
that of the NICE guidelines8, for all women and separately
for nulliparous and parous women, and used McNemar’s
test to assess the differences in DRs between the new
model and the risk-scoring system proposed by the NICE
guidelines8.

Model fitting was carried out within a Bayesian
framework using Markov chain Monte Carlo21. The
statistical software package R was also used for data
analyses22.

RESULTS

Datasets

The study population included 60 875 singleton pregnan-
cies. The maternal and pregnancy characteristics in the

training and validation datasets are given in Table 1. The
two datasets had a similar distribution for all variables
and no significant differences were observed.

Likelihood function for PAPP-A

A folded-plane regression model for the mean
log10 PAPP-A MoM was fitted to the training dataset. The
inferences for the parameters are presented in Table 2.
Residual diagnostics revealed satisfactory fitting for the
likelihood model in the test dataset. The folded-plane
regression is depicted in a three-dimensional represen-
tation in Figure 1. It is obvious that the PAPP-A levels
increase with increasing birth-weight Z-score and GA
at delivery until the break line, and beyond this thresh-
old, defined by the model, PAPP-A remains constant

Table 1 Maternal and pregnancy characteristics in training and test
datasets

Variable

Training
dataset

(n = 30 438)

Test
dataset

(n = 30 437)

Maternal age (years) 31.0 (26.5–34.8) 31.1 (26.6–34.8)
Maternal weight (kg) 67.1 (59.4–78.3) 67.1 (59.4–78.1)
Maternal height (cm) 165 (160–169) 165 (160–169)
BMI (kg/m2) 24.7 (22.0–28.8) 24.8 (22.1–28.7)
GA (weeks) 12.7 (12.3–13.1) 12.7 (12.3–13.1)
Racial origin

White 22 498 (73.9) 22 458 (73.8)
Black 5138 (16.9) 5251 (17.3)
South Asian 1392 (4.6) 1332 (4.4)
East Asian 626 (2.1) 628 (2.1)
Mixed 784 (2.6) 768 (2.5)

Conception
Natural 29 433 (96.7) 29 469 (96.8)
Ovulation induction 244 (0.8) 249 (0.8)
In-vitro fertilization 761 (2.5) 719 (2.4)

Medical history
Chronic hypertension 435 (1.4) 410 (1.3)
Diabetes mellitus 266 (0.9) 294 (1.0)
SLE/APS 60 (0.2) 62 (0.2)

Cigarette smoker 2828 (9.3) 2940 (9.7)
Family history of PE 1206 (4.0) 1187 (3.9)
Parity

Nulliparous 14 134 (46.4) 14 177 (46.6)
Parous with previous PE

or SGA < 10th percentile
2743 (9.0) 2783 (9.1)

Parous with previous SGA
< 10th percentile

2304 (7.6) 2362 (7.8)

Parous with previous PE
and SGA < 10th

percentile

247 (0.8) 232 (0.8)

Interpregnancy interval
(years)

3.0 (2.0–4.9) 3.0 (2.0–4.9)

GA at delivery of last
pregnancy (weeks)

40.0 (39.0–40.0) 40.0 (39.0–40.0)

Data are given as median (interquartile range) or n (%). APS, anti-
phospholipid syndrome; BMI, body mass index; GA, gestational
age; PE, pre-eclampsia; SGA, small-for-gestational age; SLE, syste-
mic lupus erythematosus.
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Table 2 Fitted folded-plane regression model for mean log10 pregnancy-associated plasma protein-A multiples of the median conditional to
birth-weight Z-score and gestational age at delivery (GA)

Term Estimate (95% credibility interval) SD

Intercept 0.021158030 (0.01083000–0.03231025) 0.00535788
Birth-weight Z-score 0.042875322 (0.03698000–0.04895000) 0.00300972
GA − 40 0.016274441 (0.01120000–0.02234025) 0.00283057
(GA − 40)2 0.001214426 (0.00059803–0.00207300) 0.00037523
Residual SD 0.240294492 (0.23840000–0.24220000) 0.00097587

Posterior mean, 95% credibility interval and SD for each parameter are presented.
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Figure 1 Three-dimensional representation of folded-plane regression for pregnancy-associated plasma protein-A (PAPP-A) multiples of the
median (MoM) likelihood model from two different angles.
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Figure 2 Folded-plane likelihood model reduced to
two-dimensional graph on which broken-stick model for
pregnancy-associated plasma protein-A (PAPP-A) multiples of the
median (MoM) conditional to birth-weight Z-score is depicted.
Break point is function of gestational age. Dashed line corresponds
to 40 weeks and solid line to 30 weeks.

and zero. Figure 2 illustrates in a two-dimensional
demonstration how the likelihood works. Essentially,
a broken stick is fitted conditionally to birth-weight
Z-score and the model allows the break point to be
a function of GA at delivery. Figure 3 shows the joint
distribution of birth-weight Z-score and GA at delivery
updated by the addition of PAPP-A in a high-risk and

low-risk case. For the high-risk case, the contour lines
gravitate towards earlier gestations and lower birth
weights.

Model evaluation

The prediction of several SGA definitions at fixed FPRs is
presented in Table 3. The prediction improved gradually
for earlier gestations and increasing severity of SGA. The
prediction was also better for parous women (Table 4). As
expected, the DRs were mostly lower in the test dataset
(Table 3). Overall, we found that the agreement between
the predicted risks by the new model for SGA and the
observed incidence for different SGA definitions was good
(Table 5). The calibration indices were similar in the
training and test datasets; therefore, we would expect
realistic risks on clinical application of the model.

Comparison of performance of new model with that
of NICE guidelines

The predictive performance of the competing-risks model
was superior to that of the scoring system proposed by
the NICE guidelines (Table 6). At a FPR of about 30%, as
defined by NICE, the new model predicted 62.7%, 66.5%,
68.1% and 75.3% of cases of a SGA neonate with birth
weight < 10th percentile delivered at < 42, < 37, < 34
and < 30 weeks’ gestation, respectively, compared to the
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Figure 3 Contour plots of joint Gaussian distribution of birth-weight Z-scores and gestational age at delivery according to maternal factors
and pregnancy-associated plasma protein-A in high-risk (a) and low-risk (b) case. Shaded area corresponds to risk of delivery before
34 weeks’ gestation with birth weight below 10th percentile.

Table 3 Comparison of performance of screening by maternal factors and pregnancy-associated plasma protein-A (PAPP-A) in prediction of
small-for-gestational-age neonate with birth weight (BW) < 10th or < 3rd percentile, for different gestational-age cut-offs at delivery,
between new model and logistic regression models, in training and test datasets

DR (%) at FPR of:

AUC 5% 10% 20%

Outcome measure Training Test Training Test Training Test Training Test

Delivery < 42 weeks
BW < 10th percentile

New model (maternal factors) 0.7212 0.7200 18.3 18.2 29.9 30.2 48.2 48.4
New model (maternal factors + PAPP-A) 0.7365 0.7396 20.6 20.4 32.6 34.3 50.7 51.3
Logistic regression 0.7388 0.7405 20.4 21.4 32.6 34.3 51.3 52.1

BW < 3rd percentile
New model (maternal factors) 0.7465 0.7388 21.9 20.6 33.1 34.3 51.3 51.2
New model (maternal factors + PAPP-A) 0.7716 0.7643 25.1 25.1 37.5 38.5 56.9 56.3
Logistic regression 0.7680 0.7629 24.9 25.0 37.4 38.1 56.7 55.5

Delivery < 37 weeks
BW < 10th percentile

New model (maternal factors) 0.7368 0.7039 23.6 20.0 34.7 30.0 50.5 46.2
New model (maternal factors + PAPP-A) 0.7680 0.7512 26.9 23.4 39.9 36.5 57.1 55.7
Logistic regression 0.7687 0.7464 26.9 23.1 40.3 33.5 58.6 53.7

BW < 3rd percentile
New model (maternal factors) 0.7536 0.7211 25.2 20.8 36.0 31.7 53.6 48.4
New model (maternal factors + PAPP-A) 0.7919 0.7736 31.7 26.1 44.1 41.3 62.6 59.1
Logistic regression 0.7994 0.7716 33.6 25.7 47.6 37.0 63.8 57.2

Delivery < 34 weeks
BW < 10th percentile

New model (maternal factors) 0.7410 0.7111 25.6 21.7 34.0 32.3 52.1 46.1
New model (maternal factors + PAPP-A) 0.7700 0.7603 29.4 27.2 41.6 39.0 58.8 58.3
Logistic regression 0.7693 0.7438 31.9 24.4 44.9 33.1 59.2 52.3

BW < 3rd percentile
New model (maternal factors) 0.7558 0.7190 24.9 20.9 32.2 31.3 49.7 49.3
New model (maternal factors + PAPP-A) 0.7710 0.7739 29.4 28.9 40.7 39.3 57.6 60.2
Logistic regression 0.7910 0.7563 33.9 24.4 44.6 34.8 65.5 53.2

Delivery < 30 weeks
BW < 10th percentile

New model (maternal factors) 0.7407 0.7317 26.4 22.5 31.9 38.2 46.2 48.3
New model (maternal factors + PAPP-A) 0.7653 0.7807 33.0 24.7 39.6 41.6 55.0 60.7
Logistic regression 0.7515 0.7725 34.1 21.3 43.9 31.5 59.3 61.8

BW < 3rd percentile
New model (maternal factors) 0.7431 0.7115 27.9 22.5 33.8 35.2 45.6 45.1
New model (maternal factors + PAPP-A) 0.7708 0.7684 30.9 25.4 39.7 38.0 54.4 57.8
Logistic regression 0.7565 0.7574 30.9 19.7 42.6 38.0 58.8 57.8

AUC, area under the receiver-operating-characteristics curve; DR, detection rate; FPR, false-positive rate.
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Table 4 Comparison of performance of screening for small-for-gestational-age (SGA) neonate with birth weight < 10th percentile, for
different gestational-age (GA) cut-offs at delivery, between new model and risk-scoring system based on National Institute for Health and
Care Excellence (NICE) guidelines, in test dataset, overall and according to parity

Detection rate (% (95% CI))

GA at delivery Total (n) SGA (n (%)) FPR (%)
Risk cut-off

(probability (1/N)) NICE guidelines New model P

< 42 weeks
Total 30 437 3959 (13.00) 29.40 0.05535072 (1/18) 46.7 (45.1–48.2) 62.7 (62.2–65.2) < 0.0001
Nulliparous 14 177 2239 (15.79) 22.55 0.06402645 (1/16) 34.0 (32.1–36.0) 55.4 (53.3–57.4) < 0.0001
Parous 16 260 1720 (10.58) 35.03 0.03545928 (1/28) 63.1 (60.8–65.4) 74.8 (72.7–76.8) < 0.0001

< 37 weeks
Total 30 437 671 (2.21) 31.11 0.01067656 (1/94) 55.0 (51.2–58.8) 66.5 (62.9–70.0) < 0.0001
Nulliparous 14 177 353 (2.49) 23.90 0.01543537 (1/65) 42.5 (37.3–47.7) 51.3 (46.1–56.5) 0.00406
Parous 16 260 318 (1.96) 37.38 0.006030673 (1/166) 68.9 (63.8 – 74.0) 79.6 (75.1–84.0) 0.00044

< 34 weeks
Total 30 437 254 (0.84) 31.44 0.007416389 (1/135) 55.9 (49.8–62.0) 68.1 (62.4–73.8) 0.00053
Nulliparous 14 177 138 (0.97) 27.51 0.009509288 (1/105) 44.2 (35.9–52.5) 53.6 (45.3–61.9) 0.03737
Parous 16 260 116 (0.71) 37.77 0.004490741 (1/223) 69.8 (61.5–78.2) 82.8 (75.9–89.6) 0.01481

< 30 weeks
Total 30 437 89 (0.29) 31.58 0.001497970 (1/668) 52.8 (42.4–63.2) 75.3 (66.3–84.2) 0.00033
Nulliparous 14 177 42 (0.30) 27.39 0.001912714 (1/523) 28.6 (14.9–42.2) 45.2 (30.2–60.3) 0.03481
Parous 16 260 47 (0.29) 37.89 0.0008853714 (1/1129) 74.5 (62.0–86.9) 89.4 (80.6–98.2) 0.03481

False-positive rate (FPR) in each outcome group is that derived from NICE guidelines. Risk cut-off for new model in each outcome group is
that corresponding to FPR derived by NICE guidelines. McNemar’s test was used to compare detection rates between new model and NICE
guidelines.

Table 5 Calibration study for new model in prediction of small-for-gestational-age neonate with birth weight (BW) < 10th or < 3rd

percentile, for different gestational-age (GA) cut-offs at delivery, by maternal factors and pregnancy-associated plasma protein-A, in training
and test datasets

BW < 10th percentile BW < 3rd percentile

GA at delivery Slope Intercept Slope Intercept

< 42 weeks
Training dataset 0.97290 1.06168 0.95722 0.68681
Test dataset 1.00301 1.0469 0.95649 0.7171

< 37 weeks
Training dataset 0.93390 0.10714 0.91686 0.14773
Test dataset 0.88789 0.12846 0.8718 0.26218

< 34 weeks
Training dataset 0.89808 −0.06632 0.82473 0.07248
Test dataset 0.85072 0.004051 0.82710 0.21143

< 30 weeks
Training dataset 0.80476 0.4420 0.78275 0.5094
Test dataset 0.78279 0.4234 0.73822 0.56350

respective values of 46.7%, 55.0%, 55.9% and 52.8%
achieved by application of the NICE guidelines (Table 4).

Comparison of performance of new model with that
of logistic regression models

The predictive performance of the new model for SGA
< 10th and < 3rd percentiles for gestational ages at birth
< 42, < 37, < 34 and < 30 weeks, for fixed FPRs, was
equal or superior to that of several logistic regression
models (Table 3). The process of internal validation
demonstrated that the new model is more stable with
superior performance for preterm SGA (Table 3). The
logistic regression models showed a large drop in their

discriminative ability in the test dataset, especially for
preterm SGA.

DISCUSSION

Principal findings

This study demonstrates that SGA is one condition,
described by the continuous combination of GA at
delivery and birth-weight Z-score (Figure 3). A single
model can be used for the prediction of any SGA
definition. This oneness is also reflected in the distribution
of PAPP-A, which is a continuous function of both GA
at delivery and birth-weight Z-score (Figures 1 and 2).
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Table 6 Variables used in National Institute for Health and Care
Excellence (NICE) scoring system and new competing-risks model
for prediction of small-for-gestational-age (SGA) neonate

NICE guidelines New competing-risks model

Race not included Race included
Minor risk factors (three

or more)
Maternal age ≥ 35 years Maternal age examined and not

included
Conception by IVF Conception by IVF included
Nulliparous Parity included as protective

factor
BMI < 20 kg/m2 Maternal weight and height

included as continuous
variables

BMI 25–34.9 kg/m2 Maternal weight and height
included as continuous
variables

Smoker 1–10 cigarettes
per day

Smoking status included

Low fruit intake
prepregnancy

Fruit intake not available

Previous pre-eclampsia Previous pre-eclampsia included
Pregnancy interval

< 6 months
Pregnancy interval included as

continuous variable
Pregnancy interval

≥ 60 months
Pregnancy interval included as

continuous variable
Major risk factors (one or

more)
Maternal age > 40 years Maternal age examined and not

included
Smoker ≥ 11 cigarettes

per day
Smoking status included

Paternal SGA Paternal SGA not available
Maternal SGA Maternal SGA not available
Previous SGA baby Z-scores of birth weight in

previous pregnancy included
as continuous variable

Cocaine use Cocaine use not available
Daily vigorous exercise Exercise not available
Previous stillbirth Previous stillbirth included
Chronic hypertension Chronic hypertension included
Diabetes with vascular

disease
Any type of diabetes included

Renal impairment Renal impairment not included
APS APS included as SLE and/or

APS
Heavy bleeding similar

to menses
Bleeding not included

PAPP-A < 0.4 MoM PAPP-A included as continuous
likelihood

APS, antiphospholipid syndrome; BMI, body mass index; IVF,
in-vitro fertilization; MoM, multiples of the median; PAPP-A,
pregnancy-associated plasma protein-A; SLE, systemic lupus
erythematosus.

Therefore, a new rationale is introduced that overcomes
the historical usage of fragmented outcomes and
biomarker thresholds, leading to the erroneous conclusion
that SGA consists of several different outcomes.

We confirm that PAPP-A is lower in SGA pregnancies.
Our approach goes beyond the known observation that
the larger the deviation of the biomarker the higher the
risk for preterm SGA. The deviation from a normal value
of 1 MoM depends continuously and simultaneously on

the GA at delivery and birth-weight Z-score. The use of
fixed thresholds does not capture efficiently the associa-
tion between the biomarker and the risk for SGA. Accord-
ing to NICE guidelines, PAPP-A levels below 0.4 MoM are
considered as a risk factor for SGA; consequently, preg-
nancies with low PAPP-A, but above 0.4 MoM, that still
have a substantial risk for SGA, are considered screen neg-
ative. On the other hand, the risk that is attached to each
pregnancy, when logistic regression models are used, is a
continuous function of the biomarker levels for the whole
range of the biomarkers values. However, the folded-plane
regression that we fitted for PAPP-A proves that the con-
tinuous relationship between PAPP-A and birth-weight
Z-score and GA at delivery continues until the level of
1 MoM. Therefore, the model is focused on the biomarker
levels that are clinically relevant, in a continuous way.
Practically, we may now predict SGA using a single model.
A whole personalized probability distribution is now
assigned to each pregnancy that allows risk calculation for
any desired cut-offs for severity of smallness and degree of
prematurity. This study also demonstrates the process of
adding biomarkers in the same model by using Bayes’ rule.

The predictive performance of the model for a
SGA neonate is superior to the risk-scoring system
recommended by NICE guidelines8. The performance of
screening in the test dataset is essentially a metric of the
actual clinical use of a prediction model. This process of
internal validation showed that, first, a single model has
better performance compared to a series of different logis-
tic regression models, that were fitted separately for the
different SGA definitions, and, second, the new model is
more stable in contrast to the logistic regression approach,
which has diminished discrimination in the validation
dataset, especially for preterm cases. The calibration of
the model is good and remained almost unchanged in the
validation dataset. Therefore, valid risks are produced,
enhancing an early risk stratification for SGA.

Comparison with previous studies

Previous first-trimester studies that aimed to predict
delivery of a SGA neonate reported similar sensitivities
compared to that achieved by the new model9–12.
However, the predictive performance of the new approach
is actually higher than that of previous models because
our definition of SGA was based on the new Fetal
Medicine Foundation birth-weight charts; these charts
modeled efficiently the overrepresentation of preterm SGA
pregnancies, and this has led to an increasing percentage
of SGA for lower GA cut-offs20. Thus, we are predicting
an outcome that is less extreme, compared to the previous
definitions, and consequently more difficult to predict.

Strengths and limitations

The strengths of this study are, first, the large dataset
and its prospective nature in accordance with an
implemented screening program, second, use of a
continuous folded-surface model that best describes the
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distribution of PAPP-A, third, use of a joint model that
allows estimation of patient-specific risks for any desired
SGA definition, and, fourth, use of Bayes’ rule in an update
process that can be repeated numerous times during the
course of pregnancy. We internally validated the model
in terms of discrimination and calibration, to gain insight
into what to expect in a real clinical scenario. However,
external validation is needed to show the applicability of
our results in other populations.

Implications for clinical practice

In the new era of precision medicine, we aim to use
a personalized joint distribution of birth-weight Z-score
and GA at delivery that can be altered sequentially in a
Bayesian framework. The resultant posterior distribution
can be translated to a risk for an infinite number of
combinations for birth-weight Z-score and GA at delivery
cut-offs. The new approach for the prediction of SGA
expands our thinking to a continuous association between
the biomarker levels and both the degree of prematurity
and severity of smallness. This method leads to a unified
perspective in SGA prediction and management that can
be simultaneously tailored to each pregnancy and applied
at any GA. We use a single model to obtain a probability
distribution for a continuous joint outcome rather than
arbitrarily categorizing it beforehand. This methodology
may improve the allocation of resources and planning for
antenatal visits. Also, adverse outcomes related to SGA
could be attached to a continuous model, enhancing our
understanding of the disease.

Conclusions

The distribution of PAPP-A aligns with the two elements
of SGA: severity of smallness and degree of prematurity.
This study provides more evidence that SGA is one joint
continuous outcome. The methodology described is the
benchmark of adding a new biomarker. This can be
extended to more biomarkers and repeated many times
during the course of pregnancy.
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