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Abstract: Prenatal trisomy 21 (T21) screening commonly involves testing a maternal blood sample for
fetal DNA aneuploidy. It is reliable but poses a cost barrier to universal screening. We hypothesized
maternal plasma RNA screening might provide similar reliability but at a lower cost. Discovery
experiments used plasma cell-free RNA from 20 women 11–13 weeks tested by RNA and miRNA
microarrays followed by qRT-PCR. Thirty-six mRNAs and 18 small RNAs of the discovery cDNA were
identified by qPCR as potential markers of embryonic T21. The second objective was validation of
the RNA predictors in 998 independent pregnancies at 11–13 weeks including 50 T21. Initial analyses
identified 9–15 differentially expressed RNA with modest predictive power (AUC < 0.70). The
54 RNAs were then subjected to machine learning. Eleven algorithms were trained on one partition
and tested on an independent partition. The three best algorithms were identified by Kappa score and
the effects of training/testing partition size and dataset class imbalance on prediction were evaluated.
Six to ten RNAs predicted T21 with AUCs up to 1.00. The findings suggest that maternal plasma
collected at 11–13 weeks, tested by qRT-PCR, and classified by machine learning, may accurately
predict T21 for a lower cost than plasma DNA, thus opening the door to universal screening.

Keywords: pregnancy; trisomy 21; aneuploidy; antenatal screening; antenatal diagnosis; plasma
transcriptome; RNA; machine learning

1. Introduction

Trisomy 21 (T21) is the most common aneuploidy among liveborn infants. Maternal
age, and to a lesser extent paternal age, directly impacts T21 prevalence [1,2]. Moreover,
while the prevalence of most major birth defects has remained relatively stable over the
past 15 years, the prevalence of T21 has increased in some European countries and the
USA. The US Centers for Disease Control estimates the maternal age-adjusted prevalence
of T21 increased from 1:691 births in 2010 to 1:635 births in 2014 [3,4]. The proportion of
women ≥ 35 years giving birth and the prevalence of T21 birth both have increased [5].

A range of structural abnormalities, diseases (e.g., leukemia), and learning disabilities
are well-described in T21 individuals. Though the pregnancy loss rate exceeds 50%,
surviving T21 individuals typically die in middle age, often from a disorder resembling
Alzheimer’s dementia [6]. About 40% of US families reported their T21 child’s medical
condition led to financial hardship [7].

There has been steady growth in the use of non-invasive, early pregnancy testing for
T21 [8] and for pregnancy complications in general [9]. Lo et al. first described tests that
use maternal plasma cell-free (PCF) fetal DNA for non-invasive prenatal screening using
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massive parallel sequencing technology, and subsequently, others used microarrays [10–12],
with invasive testing being reserved for diagnosis confirmation. PCF DNA testing for T21
is accurate but considered too costly to be practical as a universal screening test [13]. A
Belgium Health Care Knowledge Center report estimated that the cost of a PCF DNA test
might be 150 euros (USD 172.50) when performed in a national laboratory [14]. Private
laboratory T21 testing costs far more, and universal PCF DNA testing for T21 is currently
not cost-effective [15]. We hypothesized that a PCF RNA test for T21 based on qRT PCR, if
similar in predictive accuracy, could be operationally cost-effective compared to PCF DNA.

The PCF transcriptome includes both coding and noncoding RNAs capable of modu-
lating angiogenesis, cell proliferation/death, tumor cell invasion, and cell-to-cell communi-
cation, to list a few examples [16–18]. That the PCF transcriptome is altered by numerous
diseases suggests its potential for prognostication [19–21]. Poon et al. first described PCF
fetal RNA in the maternal circulation two decades ago [22]. Others have since described
pregnancy-derived RNAs in maternal blood and suggested the possibility of screening for
pregnancy complications [23–30]. MicroRNAs (miRNA) are a class of small non-coding
RNAs present in the transcriptome. Multiple studies suggest miRNA and other noncoding
RNAs might serve as disease biomarkers [31–35], or predict pregnancy complications
including T21 [8,36,37]. Unfortunately, none of those efforts have survived a validation
study [36–41].

We described a panel of five PCF RNAs that effectively identified by 16 weeks, women
destined for extreme preterm birth (e.g., birth ≤ 32 weeks) whether due to labor or preterm
premature rupture of membranes [42]. Our in vitro work suggested the prognostic RNAs
originate from the placenta [42]. Here, we hypothesize that transcriptional abnormalities
in maternal plasma will reflect T21 and can be predicted reproducibly by qRT-PCR. Other
reports provide support for the hypothesis such as T21 studies on the retina [43], periph-
eral mononuclear cells [44,45], astrocytes [46], fibroblasts [47], placenta [40,48–50], and
blastocysts [51]. We can identify only one prior attempt to identify plasma RNAs for T21
screening. Zednikova et al. attempted in 2020 to identify differentially expressed maternal
plasma miRs in pregnancies with a first-trimester embryo using microarrays and placental
studies [41]. Unfortunately, the validation effort failed.

Our first objective here was to seek differentially expressed PCF RNAs (both mRNAs
and miRNAs) in first trimester pregnancies with T21 embryos compared to healthy embryos.
Microarray-based analysis failed to identify a single differentially expressed RNA after
multiple comparisons correction, perhaps due to the conservative nature of such correction.
In response, we used the uncorrected data to generate a list of potentially differentially
expressed RNAs based on the effect size, consistency of response, and a lack of a race
impact and tested those by qPCR using the same aliquot of cDNA that was used for
the microarray studies. This effort derived a list of 54 plasma mRNA and miRNA for
further study. Our second objective was to validate the 54 RNA predictors by using a
qRT-PCR test in an independent cohort of 998 women sampled in the first trimester (50 T21,
948 controls). Previously, Yang et al. had applied support vector machine learning (ML)
classification to PCF DNA screening for T21 diagnosis with success [52], and we wondered
whether we could improve upon our prior unpublished efforts by using ML. Eleven (11) ML
algorithms were surveyed. The four top-performing algorithms were decision tree-based
methods. Next, the effects of training/testing partition size and dataset class imbalance
were evaluated. Addressing imbalance, both oversampling and SMOTE were effective at
improving ML predictive outcomes. Our findings suggest the utility of PCF RNA testing
via qRT-PCR coupled with ML for noninvasive T21 prediction in the first trimester.

2. Materials and Methods
2.1. Cohort

The plasma samples were prospectively obtained by Fetal Medicine Research Institute,
King’s College Hospital, London, United Kingdom, after signed informed consent was
obtained between 11 and 13 weeks gestation and stored at −80 ◦C until used. All T21
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diagnoses were confirmed either by invasive testing or at delivery. Two sets were generated
from the stored samples. The first set was used for discovery and confirmation and
consisted of 20 samples selected at random by one of the authors (AS) such that there were
10 T21 “cases” and 10 with a normal pregnancy outcome “controls”. In this set, half of
the mothers self-identified as “White” and half as “Black”. The second sample set was
used for the initial validation study. It consisted of 50 T21 cases and 968 normal controls
selected at random from the biobank without regard to race. In contrast to the cohort used
for discovery, the initial validation cohort had five races represented in normal controls
and three races represented in the T21 cases. De-identified samples were transferred to
the KUMC laboratory (CPW), and all laboratory processing was performed by masked
investigators (i.e., blinded to case/control status of the sample). Gestational age was based
on crown-rump length (CRL).

2.2. Laboratory Methods
2.2.1. RNA Extraction

Total PCF RNA was extracted by Rosetta Signaling Laboratory using a proprietary
method (Rosetta Signaling Laboratory, Phoenix, AZ, USA). The EDTA sample volume ex-
tracted was typically 500 µL. The average total RNA (±SD) extracted was 25.02 ± 14.03 µg
in approximately 40 µL in the discovery/confirmation phase and 15.74 ± 15.81 µg in 20 µL
in the initial validation phase (see Supplemental Table S1). RNA yield was assessed by a
nano spectrometer (NanoDrop Technologies, Wilmington, DE, USA) and RNA integrity
was confirmed by an Agilent bio-analyzer (Agilent, Santa Clara, CA, USA).

2.2.2. Discovery Study
Microarrays

Affymetrix Human Exon 1.0 ST Array (Santa Clara, CA, USA) and the Affymetrix
GeneChip miRNA array (847 human miRNAs) were used. All microarrays were processed
and read in 2011 by the KUMC Genomics Core according to the manufacturer’s instructions
using a GeneChip Microfluidics 450 Center and GeneChip 3000 scanner with 7G upgrade
(Applied Biosystems) with Affymetrix GeneChip Command Console Software. Microarray
RNA quality control evaluation was performed before each microarray (see Supporting
Information). Primary data analysis was conducted by the KUMC Bioinformatics Core
following minimum information about a microarray experiment guidelines [53], and
they conducted gene expression quality controls (see Supporting Information—qc on
microarray data).

qPCR

Potential mRNA markers were initially sought based on being up/down-regulated
(p-value ≤ 0.05 prior to FDR) vs. normal control and with a fold change exceeding ±1.50
after PARTEK RMA data analysis. Potential miRNA markers were selected similarly.
Unfortunately, no RNAs were identified as differentially expressed using this approach.
Next, the pre-FDR correction expression data were ranked by p-value and reordered
by narrowness of distribution for each variable in the T21 group using the MetaCore
Bioinformatics Suite. As a result, potential RNA markers of T21 were rejected if the change
in expression shown in the microarray for that RNA was due to its change in 3 or less of
the T21 women.

Some 100 of the highest-ranked RNAs were then subject to qPCR using the same
cDNA aliquot used for the microarray studies. RNAs identified by qPCR as differentially
expressed were considered for analysis in the initial validation study. Two microliters of
the pre-amplified cDNA samples was diluted into a 10 µL PCR reaction mix, followed by
qPCR. Multiplex qPCR reactions were performed using the ViiA 7 Real-Time PCR System.
The primers for the qPCR studies were custom designed and synthesized by Integrated
DNA Technologies (IDT, Coralville, IA, USA). Information about the primer sequences is
available from the authors. The probe sets in each well included a spiked-in cDNA and



Diagnostics 2022, 12, 1410 4 of 23

the primers for the RNA under study plus normalization and spike-in genes so that all
three were run in the same well to minimize assay variation. Threshold cycles (Ct values)
of qPCR reactions were derived using QuantStudio™ Software V1.3 (Applied Biosystems,
Foster City, CA, USA). Marker RNAs were normalized to the housekeeping control and a
spiked-in cDNA. The ∆∆Cts were determined and the relative fold value was calculated
using the 2−∆∆Ct method (or 2∆∆Ct for down-regulated RNAs).

2.2.3. Validation Study
qRT-PCR Assays

mRNA RT: The RNA samples were diluted, and a master mix was prepared including
dNTP mix, Omniscript Reverse Transcriptase, and Random Primer (Invitrogen, Carlsbad,
CA, USA). The mRNA of each sample was converted into cDNA at 37 ◦C for 60 min per
the manufacturer’s instructions.

miRNA RT: The miRs were polyadenylated using reagents from the Invitrogen NCode
miRNA First-Strand cDNA Synthesis Kit (ThermoFisher, Waltham, MA, USA). The polyadeny-
lated microRNA was reverse transcribed to generate the first strand of cDNA according to
the manufacturer’s protocol.

Preamplification: One microliter of RT samples was prepared with the preamplification
Mix Reaction and underwent 12 cycles of amplification.

Two customized probe-based microfluidic PCR Cards with 384 wells were developed
for the selected mRNA and small noncoding RNA markers using a proprietary method
(Rosetta Signaling Laboratory, Phoenix, AZ, USA). The probe sets in each well included a
spiked-in cDNA and the primers for the RNA under study plus normalization and spike-in
genes so that all three were run in the same reaction well to minimize assay variation.
Threshold cycles (Ct values) of qPCR reactions were derived using QuantStudio™ Software
V1.3 (Applied Biosystems, Foster City, CA, USA). Marker RNAs were normalized to the
housekeeping control and a spiked-in cDNA. The ∆∆Cts were determined and the relative
fold value was calculated using the 2−∆∆Ct method (or 2∆∆Ct for down-regulated RNAs).

2.3. Statistical Analysis
2.3.1. Validation Analysis

An independent cohort of 1018 patient samples with maternal and pregnancy vari-
ables available including maternal age, weight, height, race (self-identified), and gestational
age at sampling was employed. Following RNA extraction and RNA quality assessment,
998 RNAs were subjected to card-based PCR. The results were first subjected to quality
control assessment using on-card-positive PCR controls, negative controls, and then nor-
malized using two proprietary housekeeping genes. The normalized results were input
into eleven classification algorithms within the CARET package using the freely available
R Project for Statistical Computing downloaded from CRAN. R scripts used for analysis
are available from the authors. The ML dataset is provided in Supplemental Table S5.

2.3.2. Data Preprocessing

∆∆Ct values were not normally distributed by either the Shapiro–Wilk test or scatterplot
inspection, and attempts were made to normalize the dataset using common procedures, e.g.,
centering (subtraction by the average value) and scaling (dividing by the standard deviation),
or transformation via lognormal, log10, log2, square, square root, and simple combination of
mathematical transformations. Ct values failed to normalize (not shown), and fold-change
values were used without transformation (see Supplemental Table S5).

In addition to normalization, a correlation matrix of the expression results was gen-
erated (see Supplemental Table S4). These two characteristics suggested this dataset was
unlikely to be tractable to linear methods. Since tree-based learning methods are notably
insensitive to the characteristics of the predictor, those methods were part of the survey.
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2.3.3. Differential Expression

The expression levels between cases/controls were compared using the Mann–Whitney–
Wilcoxon test in R. The raw p-value was adjusted for multiple comparisons using false
discovery rate correction methods: Q-values, Benjamini–Hochberg, Benjamini–Yekutieli,
Holm, Hochberg, Hommel, and Bonferroni family-wise correction for potential RNA
markers with p < 0.05, two-tailed labeled as significant. Boxplots and ROC curves for
differentially expressed genes were generated using the R statistical package, saved as
enhanced metafiles, and edited for publication using Canvas x19 (build 333).

2.3.4. Machine Learning

Complete datasets were used for ML, and cases/controls with incomplete data were
omitted. The dataset was split randomly into training and testing partitions using R’s
“createDataPartition” function and a fixed seed. The models were trained using repeatedcv,
which applies repeated k-fold cross-validation (CV) with options: number = 10, repeats = 5.
This means the training dataset was randomly divided into 10 parts and then using each of
the ten parts as a testing dataset for the model trained on the other nine. The average of the
10 error terms is thus obtained. In 5 repeats of 10-fold CV means that the average of error
terms obtained by performing 10-fold CV five times was obtained. Each model was tuned
using the metric Kappa or accuracy to optimize and use the algorithm defaults for tuning
variables. Due to the trial-and-error nature of ML, we scanned model performance across
eleven ML algorithms in the CARET package using a fixed allocation of the dataset (70% to
the training set) and then tested using the holdout (30% of the whole dataset for testing)
set. The eleven ML algorithms used were: generalized boosted regression models (GBM),
decision trees and rule-based model that extended the work by Quinlan (C50, Quinlan,
1993, ISBN:1-55860-238-0), random forest (RF), the boosted adabag model described by
Freund and Schapire (adaboost, [54]), Naïve Bayes (NB), multivariate regression splines
(MARS) model by Friedman (Earth package, see Friedman’s papers “Fast MARS” and
“multivariate adaptive regression splines” <doi:10.1214/aos/1176347963>), mixture and
flexible discriminant analysis (MDA), linear discriminant analysis (LDA), neural networks
(NNET), support vector machine (spherical, SVM), and classification and regression trees
(CART) in Comprehensive R Archive Network (CRAN) for R (R build 4.0.3 through 4.1.2).
The four best-performing algorithms defined by Kappa or accuracy were evaluated using
tuning and ensemble techniques. In each case, model performance was evaluated by
applying the final model to the test dataset and the generation of a confusion matrix. The
accuracy and Kappa of each final model were recorded and graphed vs. training partition
size and ROC curves were prepared using the ROCR package.

To evaluate the impact of training partition size and class imbalance on ML per-
formance, model performance data (Kappa and accuracy) was plotted against training
partition size (45–90%) and with or without the application of four methods that address
class imbalance: Oversampling, downsampling, or the synthetic minority oversampling
technique (SMOTE) [55] or the random oversampling technique (ROSE) [56]. Graphs were
generated in R and saved as EMF files. The EMF files were imported into Canvas x19 (build
333) and assembled into final figures and saved in TIFF format.

3. Results
3.1. Discovery
3.1.1. Study Subjects

A cohort of 40 women ( 1
2 with a T21 fetus; 1

2 Black, 1
2 White) sampled in the first

trimester had PCF RNA isolated. The biographical information is shown in Table 1. Note
that the maternal age of the T21 group compared to the normal group differed significantly
using one-tailed testing based upon the hypothesis that older MA would increase the risk
of T21 (37.3 ± 4.1 y T21 vs. 33.7 ± 5.0 normal, p < 0.05 one-tailed). Race and ethnicity did
not differ significantly between the two groups. PCF RNA was extracted from the entire
plasma sample using a proprietary method (Rosetta Signaling Laboratory LLC, Phoenix,
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AZ, USA). The average yield was 25.02 µg ± 14.03 µg (±1 SD, range 9.60–72.63 µg, n = 40;
see Supplemental Table S1).

Table 1. Biographical information about discovery cohort.

T21 (n = 10)
Mean (SD) Range Normal (n = 10)

Mean (SD) Range T21
p-Value *

Race and Ethnicity
p-Value *

GA (week) 12.9 (0.6) (11.9–13.9) 12.7 (0.5) (12.1–13.4) NS NS
MA (years) 37.3 (4.1) (27.2–42.0) 33.7 (5.0) (24.6–40.0) p = 0.098 ** NS ***
Height (cm) 163.6 (4.9) (157.5–170.2) 165.1 (4.4) (157.5–171.0) NS NS
Weight (kg) 70.7 (9.9) (60.0–83.5) 69.8 (18.7) (50.00–115.0) NS *** NS ***

* Two-tailed p-value from Student’s t-test, unless indicated otherwise. ** Ho: MA-T21 > than MA-normal,
one-tailed testing would indicate p < 0.05. *** Mann–Whitney rank-sum test.

RNA from 20 subjects ( 1
2 with a T21 fetus; 1

2 Black, 1
2 White) was selected at random,

reverse transcribed, and applied to Affymetrix Exon 1.0 ST microarrays for mRNA expres-
sion and Affymetrix GeneChip miRNA microarray for noncoding RNAs. After background
subtraction, normalization, and differential expression analysis using the RMA protocol,
232,119 exons were read of which 2686 (1.2%) were located on chromosome #21. In total,
10,280 exons differed in expression by >1.5-fold between T21 and normal control after
accounting for the effect of race and ethnicity and before application of p-value correction
for false discovery rate (FDR). However, none of these RNAs were differentially expressed
following correction for the FDR (original dataset, Supplemental Tables S2 and S3).

3.1.2. Focused Search Following Effect Size Stratification and Removal of RNAs Affected
by Race

The microarray data was ranked by effect size, p-value, and narrowness of distribu-
tion, and the top 100 RNAs were subjected to qPCR (not shown). After expression was
normalized to internal controls, fifty-four (54) RNAs were differentially expressed by qPCR
(results not shown). Thirty-six mRNAs were differentially expressed by qPCR and the
origins of these RNAs were distributed on seven different chromosomes. One-third of the
exons were up-regulated in T21 (12 out of 36) and two-thirds were down-regulated in T21
(Table 2a). Two of the RNAs originated on chromosome #4, 1 on chromosome #11, 2 on chro-
mosome #14, 1 on chromosome #16, 2 on chromosome #17, 1 on chromosome #19, and 19
on chromosome #21 (see Table 2a). There were 18 noncoding RNAs differentially expressed
based on qPCR (Table 2b). The RNA’s genes of origin involved 13 chromosomes; about half
of the noncoding RNAs were up-regulated in T21, and the other half were down-regulated.
Three noncoding RNAs originated on the X chromosome, two noncoding RNAs originated
on chromosomes #2, 3, and 5, and one noncoding RNA originated on chromosome #8, 9,
11, 13, 14, 15, 18, 19, and 21 (Table 2b). Thus, 54 RNAs were identified by qPCR as being
differentially expressed in the cDNA from the same samples run on the microarrays (see
Table 2a,b). These RNAs were used to design a custom-made 384 microfluidic-well card
manufactured by Applied Biosciences for use in validation testing described below.

Table 2. RNAs used in confirmation testing. (a) Coding mRNA; (b) Noncoding small RNA.

(a)

Group 1. Coding mRNA
Gene Name p-Value Ref Sequence Chromosome Origin Up or Down Regulation

SORBS2-Hs00243432_m1 <0.01 NM_001145671 4 Down
SORBS2-Hs01125202_m1 <0.01 NM_001145671 4 Up
DSCAM-Hs00242097_m1 <0.01 NM_020693 11 Down

NEK9-Hs00929602_m1 <0.01 NM_033116 14 Down
NEK9-Hs00929594_m1 <0.01 NM_033116 14 Up

ABCC1-Hs01561504_m1 <0.01 NM_004996 16 Up
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Table 2. Cont.

(a)

Group 1. Coding mRNA
Gene Name p-Value Ref Sequence Chromosome Origin Up or Down Regulation

FAM20A-Hs01034071_m1 <0.01 NR_027751 17 Down
FAM20A-Hs01034070_m1 <0.01 NR_027751 17 Down

RASGRP4-Hs01073179_m1 <0.01 NM_170604 19 Down
TMPRSS2-ERG fusion gene <0.01 NM_002772 21 Down

ATP5O-Hs04272738_m1 <0.01 NM_001697.3 21 Down
ICOSLG-Hs00391287_m1 <0.01 NM_015259 21 Down
DOP1B-Hs01123288_m1 <0.01 NM_005128 21 Down
DOP1B-Hs01123267_g1 <0.01 NM_005128 21 Down

C21orf33-Hs01105802_g1 <0.01 NM_004649 21 Down
ADAMTS5-Hs04272736_s1 <0.01 NM_007038 21 Down

CXADR-Hs04194411_s1 <0.01 NM_001338 21 Down
UBASH3A-Hs00955168_m1 <0.01 NM_001001895.3 21 Down

CHODL-Hs01070471_m1 <0.01 NM_024944.3 21 Down
PKNOX1-Hs01007098_m1 <0.01 NM_004571 21 Down
PKNOX1-Hs01007097_m1 <0.01 NM_001286258 21 Down
PKNOX1-Hs00231814_m1 <0.01 21 Down
SLC19A1-Hs00953341_m1 <0.01 NM_194255 21 Down
PRDM15-Hs00411318_m1 <0.01 NM_022115 21 Down
COL6A1-Hs01095585_m1 <0.01 NM_001848 21 Down
ABCG1-Hs01555191_m1 <0.01 NM_016818 21 Down
GART-Hs00531926_m1 <0.01 NM_000819 21 Down
ERG-Hs01573964_m1 <0.01 NM_004449 21 Up

NCAM2-Hs01562292_m1 <0.01 NM_004540.5 21 Up
UBASH3A-Hs00955169_m1 <0.01 NM_018961.4 21 Up

PFKL-Hs01040525_m1 <0.01 NR_024108 21 Up
PKNOX1-Hs01007094_m1 <0.01 NM_001320694 21 Up
PKNOX1-Hs01007093_m1 <0.01 21 Up
PKNOX1-Hs01007092_m1 <0.01 NM_004571 21 Up
CYYR1-Hs00951849_m1 <0.01 NR_135472 21 Up

SLC19A1-Hs00953342_m1 <0.01 NM_194255 21 Up

(b)

Group 2. Noncoding Small RNA
Gene Name p-Value Type Chromosome Origin Up or Down Regulation

hsa-mir-26b <0.01 miRNA 2 Down
hsa-mir-216b <0.01 miRNA 2 Up

hsa-mir-569 F1 <0.01 miRNA 3 Down
hsa-mir-548I <0.01 miRNA 3 Down

ENSG00000212363 <0.01 snoRNA 5 Down
hsa-mir-581 F1 <0.01 miRNA 5 Up

HBII-276 F2 <0.01 CDBox 8 Up
hsa-let-7d F1 <0.01 miRNA 9 Up

ENSG00000201980 <0.01 snoRNA 11 Up
ENSG00000199282 <0.01 snoRNA 13 Down

hsa-mir-376a-2/1 F2 <0.01 miRNA 14 Down
ENSG00000199633 F2 <0.01 snoRNA 15 Up
ENSG00000199856 F1 <0.01 snoRNA 18 Down

hsa-mir-523 <0.01 miRNA 19 Down
ENSG00000207147 F2 <0.01 snoRNA 21 Up

ENSG00000202231 <0.01 snoRNA X Down
hsa-mir-98 <0.01 miRNA X Down

hsa-mir-450b <0.01 miRNA X Down
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3.2. Validation Study
3.2.1. Study Subjects

PCF RNA was extracted from an independent cohort of 1018 women sampled in the
first trimester. An average of 15.74 ± 15.81 µg of total RNA in 20 µL (range of 3.34–88.02 µg)
was isolated from the 500 µL plasma samples provided to Rosetta Signaling Technologies,
LLC (see Supplemental Table S1; note Rosetta Signaling Technology’s historical data indi-
cates an average yield of 15.78 ± 7.26 µg in 20 µL from 500 µL of plasma, n = 3000, data not
shown). Twenty samples, all from the control group, were rejected due to either sample
ID mismatch, hemolysis, or low RNA quality, leaving 998 samples for analysis, including
50 T21 and 948 normal controls. The biographical data and sampling time of the cohort are
summarized in Table 3 (and the data used for ML in Supplemental Table S5). The normal
controls, e.g., birth of euploid baby at term, included five self-identified racial and ethnic
groups: White (698, 73%), Black (144, 15%), South Asian (48, 5%), East Asian (24, 2.5%),
and mixed (37, 3.9%). The “cases”, e.g., birth of a T21 baby, included 3 self-identified racial
and ethnic groups: White (42, 86%), Black (6, 12%), and East Asian (2, 4%). Due to the
imbalanced dataset, “race” was excluded as a predictor variable for ML. Note, the gesta-
tional age at sampling of the T21 group was higher by an average of 0.3 weeks compared
to control, but the range was the same: 11.2–14.1 weeks (Table 3). The average maternal
age was significantly higher in the T21 group (T21 37.6 ± 4.4 years, n = 50 vs. normal
31.7 ± 5.64 years, n = 948). The receiver operator characteristic (ROC) curve demonstrates
that maternal age was a predictor of T21 risk, as indicated by the area under the curve
(AUC) of 0.796, 95% confidence interval [CI] 0.734–0.850. Both the maternal height and
weight varied significantly among racial and ethnic groups (not shown) but did not differ
between T21 cases and normal controls.

Table 3. Biographical information about validation cohort.

T21 (n = 50)
Mean (SD) Range Normal (n = 948)

Mean (SD) Range T21
p-Value *

Race/Ethnicity
p-Value *

GA (week) 13.0 (0.7) (11.3–14.1) 12.7 (0.6) (11.2–14.1) <0.001 NS
MA (years) 37.6 (4.4) (26.4–46) 31.7 (5.6) (18.1–45.1) <0.001 <0.001
Height (cm) 164.6 (7.1) (149.9–182.9) 164.5 (6.9) (138.0–195.6) NS <0.001
Weight (kg) 68.1 (11.1) (44.5–99.2) 66.6 (11.9) (40.0–29.0) NS <0.001

* Two-tailed p-value from Mann–Whitney–Wilcoxon test.

3.2.2. Validation Results

To visually assess the differential expression of the fold values of the 54 RNAs, the
normal control group was divided randomly in half and the log-fold value of each RNA
was plotted (Figure 1, left). Following simple linear regression (gray line), the R2 of the
predicted model was >0.99 and the predicted slope was not significantly different from
a slope of 1 for the normal control RNA log-fold values in partition 1 vs. normal control
RNA log-fold values in partition 2 (the dotted lines indicate the 95% confidence interval).
This shows the reproducibility of the qRT-PCR data.

As shown in Figure 1, right, the log-fold value for RNA markers in the normal control
group was plotted against the log-fold value for the RNAs in the T21 group, and a simple
linear regression line was fitted (gray line). The R22 of the predicted line was < 0.51, and
the slope of the regression line (0.632) was significantly different from a slope of 1 (the
black line, p < 0.001). This result supports the differential expression of RNAs between
T21 and normal control. It was noted that differentially expressed RNAs were found
both on chromosome #21 (Figure 1, bottom right), and not on chromosome #21 (Figure 1,
bottom left).
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Commented [M1]: 更新 figure 1, y 轴说明变更 Figure 1. RT-PCR results from Validation dataset. (Top left) Data from the 948 controls were
randomly allocated into two groups and then average expression of the 54 RNAs was plotted. The
regression line (R2 > 0.99) falls along the slope of 1 (indicated by the grey line) and within 95%
confidence interval (indicated by the broken lines). (Top right) Averaged expression data from the
50 T21 cases were plotted against averaged expression data from the 948 controls. Linear regression
(R2 < 0.51) of the data is shown in grey (95% confidence interval indicated by broken lines) and is
significantly different from the slope of 1 (line shown in black). Note that the RNAs evaluated are
indicated by plate ID in red. The open circles represent RNAs found to be differentially expressed
between T21 and control using Mann–Whitney–Wilcoxon test followed by the Bonferroni correction
for false discovery rate. The numbers of selected RNAs and their gene name are provided to the
right, with the nine differentially expressed genes shown in bold and underline. (Bottom left) RNAs
found on chromosomes other than #21. In filled triangles, the average expression of the controls is
plotted after being randomly allocated into two groups. In open triangles, the T21 case expression
is plotted against average expression of controls. (Bottom right) RNAs found on chromosome #21
are shown. In filled circles, data from the controls were randomly allocated into two groups, then
averaged and plotted. In the open circles, the average expression of T21 cases is plotted against the
average expression of normal. Bottom two panels: The line fitting this data and the 95% confidence
interval is shown. The solid black lines show the regression fit for control vs. control (the broken lines
indicate the 95% confidence interval). The solid red lines show the regression fit for T21 vs. control
(the broken lines indicate the 95% confidence interval). The numbers next to the data points of T21 vs.
control indicate the RNA identification found in the plate.

To further investigate differential expression between case/control, Mann–Whitney–
Wilcoxon testing was used to compare T21 to normal control, followed by p-value correction
for false discovery rate via Q-values [57], or the Benjamini–Hochberg method [58]. Fif-
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teen (15) differentially expressed RNAs were identified by this approach (Table 4). In
contrast, 13 RNAs were identified as differentially expressed in T21 using Benjamini–
Yekutieli correction [59], nine RNAs using the Holm [60], Hochberg [61], Hommel [62], or
Bonferroni [63] methods. The nine differentially expressed RNAs identified by Bonferroni
are represented as open circles in Figure 1, right.

In Figure 2, nine differentially expressed RNAs are plotted individually to compare
differential expression and a ROC curve. Summarizing the qRT-PCR findings presented
so far: (1) PCR RNA from an independent and more diverse patient cohort than used in
the discovery phase indicates validation of 9–15 RNAs originally suggested by microar-
ray/qPCR as being differentially expressed between T21 case and normal control; (2) the
AUC indicates that the predictive power of each of the 9 differentially expressed RNAs
falls into a “fair” 0.6–0.7 range of accuracy, similar to what was found modeling maternal
age, alone. This level of accuracy would not likely be clinically useful.

Figure 2. Boxplots and receiver operator characteristic (ROC) curves for the nine differentially
expressed RNAs following Bonferroni correction for false discovery rate.

3.2.3. Application of ML Classification Algorithms to qRT-PCR Data

Eleven ML classification algorithms found in the CARET package of R were used for
surveying. For training and performance evaluation, the dataset was parsed randomly
into 70% training and 30% testing partitions. The ML survey results are shown in Figure 3.
The top four algorithms, GBM, C50, RF, and adaboost, had an average accuracy of >98%
and an average Kappa of >80%. GBM had the highest accuracy, and C50 had the highest
Kappa. Patient-specific variables such as gestational age at sampling and maternal age
were included or excluded during this modeling with no significant impact on Kappa (data
not shown).
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Table 4. Differentially expressed RNAs and biographical variables used in machine learning.

Chromosome Plate Position Variables NCBI Names Mann–Whitney–
Wilcoxon Q-Values Benjamini–Hochberg Benjamini–Yekutieli Holm Hochberg Hommel Bonferroni

MA 1.64 × 10−12 8.34 × 10−11 9.51 × 10−11 4.42 × 10−10 9.51 × 10−11 9.51 × 10−11 9.51 × 10−11 9.51 × 10−11

19 19 RASGRP4 NM_170604 2.49 × 10−7 6.33 × 10−6 7.21 × 10−6 3.35 × 10−5 1.42 × 10−5 1.42 × 10−5 1.42 × 10−5 1.44 × 10−5

2 10 hsa-mir-26b miRNA miR-26b 2.16 × 10−6 3.52 × 10−5 4.01 × 10−5 1.86 × 10−4 1.21 × 10−4 1.21 × 10−4 1.19 × 10−4 1.25 × 10−4

21 38 UBASH3A NM_018961.4 2.77 × 10−6 3.52 × 10−5 4.01 × 10−5 1.86 × 10−4 1.52 × 10−4 1.52 × 10−4 1.52 × 10−4 1.60 × 10−4

21 31 ICOSLG NM_015259 7.77 × 10−6 7.91 × 10−5 9.01 × 10−5 4.19 × 10−4 4.20 × 10−4 4.20 × 10−4 4.20 × 10−4 4.51 × 10−4

11 9 ENSG00000201980 snoRNA SNORA62L4 6.24 × 10−5 5.29 × 10−4 6.03 × 10−4 2.80 × 10−3 3.31 × 10−3 3.31 × 10−3 3.31 × 10−3 3.62 × 10−3

GA.w 2.51 × 10−4 1.68 × 10−3 1.92 × 10−3 8.92 × 10−3 1.30 × 10−2 1.30 × 10−2 1.23 × 10−2 1.45 × 10−2

21 52 COL6A1 NM_001848 2.85 × 10−4 1.68 × 10−3 1.92 × 10−3 8.92 × 10−3 1.45 × 10−2 1.45 × 10−2 1.40 × 10−2 1.65 × 10−2

21 37 NCAM2 NM_004540.5 2.98 × 10−4 1.68 × 10−3 1.92 × 10−3 8.92 × 10−3 1.49 × 10−2 1.49 × 10−2 1.46 × 10−2 1.73 × 10−2

14 22 NEK9 NM_033116 3.78 × 10−4 1.92 × 10−3 2.19 × 10−3 1.02 × 10−2 1.85 × 10−2 1.85 × 10−2 1.81 × 10−2 2.19 × 10−2

21 51 PRDM15 NM_022115 7.18 × 10−4 3.32 × 10−3 3.78 × 10−3 1.76 × 10−2 3.44 × 10−2 3.44 × 10−2 3.30 × 10−2 4.16 × 10−2

21 2 ENSG00000207147 F2 snoRNA SNORA51L12 1.41 × 10−3 5.96 × 10−3 6.80 × 10−3 3.16 × 10−2 6.64 × 10−2 6.64 × 10−2 6.32 × 10−2 8.19 × 10−2

21 27 TMPRSS2-ERG fusion
gene NM_002772 1.52 × 10−3 5.96 × 10−3 6.80 × 10−3 3.16 × 10−2 7.01 × 10−2 7.01 × 10−2 6.70 × 10−2 8.84 × 10−2

18 17 ENSG00000199856 F1 snoRNA SNODB852 2.03 × 10−3 7.39 × 10−3 8.42 × 10−3 3.91 × 10−2 9.15 × 10−2 9.15 × 10−2 8.95 × 10−2 1.18 × 10−1

21 33 DOP1B NM_005128 3.08 × 10−3 1.04 × 10−2 1.19 × 10−2 5.53 × 10−2 1.36 × 10−1 1.36 × 10−1 1.32 × 10−1 1.79 × 10−1

21 26 SORBS2 NM_001145671 4.21 × 10−3 1.34 × 10−2 1.53 × 10−2 7.10 × 10−2 1.81 × 10−1 1.81 × 10−1 1.81 × 10−1 2.44 × 10−1

9 3 hsa-let-7d F1 miRNA let-7d 1.08 × 10−2 3.22 × 10−2 3.67 × 10−2 1.70 × 10−1 4.52 × 10−1 4.52 × 10−1 4.19 × 10−1 6.24 × 10−1

17 20 FAM20A NR_027751 1.92 × 10−2 5.20 × 10−2 5.93 × 10−2 2.76 × 10−1 7.88 × 10−1 7.77 × 10−1 6.15 × 10−1 1.00 × 100

21 41 CHODL NM_024944.3 1.94 × 10−2 5.20 × 10−2 5.93 × 10−2 2.76 × 10−1 7.88 × 10−1 7.77 × 10−1 6.22 × 10−1 1.00 × 100

X 12 hsa-mir-450b miRNA miR-450b 2.79 × 10−2 7.10 × 10−2 8.10 × 10−2 3.76 × 10−1 1.00 × 100 9.98 × 10−1 7.71 × 10−1 1.00 × 100

17 21 FAM20A NR_027751 3.41 × 10−2 8.25 × 10−2 9.41 × 10−2 4.37 × 10−1 1.00 × 100 9.98 × 10−1 8.51 × 10−1 1.00 × 100

21 34 C21orf33 NM_004649 5.11 × 10−2 1.18 × 10−1 1.35 × 10−1 6.26 × 10−1 1.00 × 100 9.98 × 10−1 9.98 × 10−1 1.00 × 100

11 29 DSCAM NM_020693 5.46 × 10−2 1.21 × 10−1 1.38 × 10−1 6.40 × 10−1 1.00 × 100 9.98 × 10−1 9.98 × 10−1 1.00 × 100

21 36 CXADR NM_001338 6.04 × 10−2 1.28 × 10−1 1.46 × 10−1 6.79 × 10−1 1.00 × 100 9.98 × 10−1 9.98 × 10−1 1.00 × 100

13 14 ENSG00000199282 snoRNA SNOFA9 6.63 × 10−2 1.35 × 10−1 1.54 × 10−1 7.14 × 10−1 1.00 × 100 9.98 × 10−1 9.98 × 10−1 1.00 × 100

21 30 ERG NM_004449 8.44 × 10−2 1.65 × 10−1 1.88 × 10−1 8.75 × 10−1 1.00 × 100 9.98 × 10−1 9.98 × 10−1 1.00 × 100

3 4 hsa-mir-569 F1 miRNA miR-569 9.42 × 10−2 1.77 × 10−1 2.02 × 10−1 9.40 × 10−1 1.00 × 100 9.98 × 10−1 9.98 × 10−1 1.00 × 100

5 13 SORBS2 NM_001145671 1.09 × 10−1 1.91 × 10−1 2.18 × 10−1 1.00 × 100 1.00 × 100 9.98 × 10−1 9.98 × 10−1 1.00 × 100

4 25 ENSG00000212363 snoRNA SNOFA40L2 1.09 × 10−1 1.91 × 10−1 2.18 × 10−1 1.00 × 100 1.00 × 100 9.98 × 10−1 9.98 × 10−1 1.00 × 100

21 47 PKNOX1 1.20 × 10−1 2.04 × 10−1 2.33 × 10−1 1.00 × 100 1.00 × 100 9.98 × 10−1 9.98 × 10−1 1.00 × 100

2 8 hsa-mir-216b miRNA miR-216b 1.52 × 10−1 2.50 × 10−1 2.85 × 10−1 1.00 × 100 1.00 × 100 9.98 × 10−1 9.98 × 10−1 1.00 × 100

21 32 DOP1B NM_005128 1.63 × 10−1 2.59 × 10−1 2.95 × 10−1 1.00 × 100 1.00 × 100 9.98 × 10−1 9.98 × 10−1 1.00 × 100

14 16 hsa-mir-376a-2/1 F2 miRNA miR-376a 1.86 × 10−1 2.86 × 10−1 3.26 × 10−1 1.00 × 100 1.00 × 100 9.98 × 10−1 9.98 × 10−1 1.00 × 100

21 35 ADAMTS5 NM_007038 1.91 × 10−1 2.86 × 10−1 3.26 × 10−1 1.00 × 100 1.00 × 100 9.98 × 10−1 9.98 × 10−1 1.00 × 100

Weight 2.08 × 10−1 3.02 × 10−1 3.44 × 10−1 1.00 × 100 1.00 × 100 9.98 × 10−1 9.98 × 10−1 1.00 × 100

5 11 hsa-mir-581 F1 miRNA miR-581 2.20 × 10−1 3.11 × 10−1 3.55 × 10−1 1.00 × 100 1.00 × 100 9.98 × 10−1 9.98 × 10−1 1.00 × 100

21 46 PKNOX1 NM_004571 2.37 × 10−1 3.20 × 10−1 3.64 × 10−1 1.00 × 100 1.00 × 100 9.98 × 10−1 9.98 × 10−1 1.00 × 100

21 44 PKNOX1 NM_001320694 2.39 × 10−1 3.20 × 10−1 3.64 × 10−1 1.00 × 100 1.00 × 100 9.98 × 10−1 9.98 × 10−1 1.00 × 100

21 50 SLC19A1 NM_194255 2.97 × 10−1 3.81 × 10−1 4.34 × 10−1 1.00 × 100 1.00 × 100 9.98 × 10−1 9.98 × 10−1 1.00 × 100

21 40 PFKL NR_024108 2.99 × 10−1 3.81 × 10−1 4.34 × 10−1 1.00 × 100 1.00 × 100 9.98 × 10−1 9.98 × 10−1 1.00 × 100

8 18 HBII-276 F2 SnoRNA HBII-276
CDBox 3.33 × 10−1 4.13 × 10−1 4.71 × 10−1 1.00 × 100 1.00 × 100 9.98 × 10−1 9.98 × 10−1 1.00 × 100

15 1 ENSG00000199633 F2 snoRNA SNODB1383 3.62 × 10−1 4.38 × 10−1 5.00 × 10−1 1.00 × 100 1.00 × 100 9.98 × 10−1 9.98 × 10−1 1.00 × 100

X 7 ENSG00000202231 snoRNA SNOFA9 3.74 × 10−1 4.43 × 10−1 5.05 × 10−1 1.00 × 100 1.00 × 100 9.98 × 10−1 9.98 × 10−1 1.00 × 100

21 28 ATP5O NM_001697.3 3.85 × 10−1 4.46 × 10−1 5.08 × 10−1 1.00 × 100 1.00 × 100 9.98 × 10−1 9.98 × 10−1 1.00 × 100

21 49 SLC19A1 NM_194255 4.72 × 10−1 5.33 × 10−1 6.08 × 10−1 1.00 × 100 1.00 × 100 9.98 × 10−1 9.98 × 10−1 1.00 × 100

4 24 ABCC1 NM_004996 5.60 × 10−1 6.20 × 10−1 7.06 × 10−1 1.00 × 100 1.00 × 100 9.98 × 10−1 9.98 × 10−1 1.00 × 100

3 5 hsa-mir-548I miRNA miR-548I 6.62 × 10−1 7.12 × 10−1 8.12 × 10−1 1.00 × 100 1.00 × 100 9.98 × 10−1 9.98 × 10−1 1.00 × 100
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Table 4. Cont.

Chromosome Plate Position Variables NCBI Names Mann–Whitney–
Wilcoxon Q-Values Benjamini–Hochberg Benjamini–Yekutieli Holm Hochberg Hommel Bonferroni

21 45 PKNOX1 6.93 × 10−1 7.12 × 10−1 8.12 × 10−1 1.00 × 100 1.00 × 100 9.98 × 10−1 9.98 × 10−1 1.00 × 100

21 48 CYYR1 NR_135472 6.99 × 10−1 7.12 × 10−1 8.12 × 10−1 1.00 × 100 1.00 × 100 9.98 × 10−1 9.98 × 10−1 1.00 × 100

X 9 hsa-mir-98 miRNA miR-98 7.00 × 10−1 7.12 × 10−1 8.12 × 10−1 1.00 × 100 1.00 × 100 9.98 × 10−1 9.98 × 10−1 1.00 × 100

21 42 PKNOX1 NM_004571 7.30 × 10−1 7.28 × 10−1 8.30 × 10−1 1.00 × 100 1.00 × 100 9.98 × 10−1 9.98 × 10−1 1.00 × 100

21 54 GART NM_000819 7.53 × 10−1 7.37 × 10−1 8.40 × 10−1 1.00 × 100 1.00 × 100 9.98 × 10−1 9.98 × 10−1 1.00 × 100

14 23 NEK9 NM_033116 8.48 × 10−1 8.14 × 10−1 9.28 × 10−1 1.00 × 100 1.00 × 100 9.98 × 10−1 9.98 × 10−1 1.00 × 100

19 15 hsa-mir-523 miRNA miR-523 8.96 × 10−1 8.44 × 10−1 9.62 × 10−1 1.00 × 100 1.00 × 100 9.98 × 10−1 9.98 × 10−1 1.00 × 100

Height 9.63 × 10−1 8.75 × 10−1 9.98 × 10−1 1.00 × 100 1.00 × 100 9.98 × 10−1 9.98 × 10−1 1.00 × 100

21 43 PKNOX1 NM_001286258 9.72 × 10−1 8.75 × 10−1 9.98 × 10−1 1.00 × 100 1.00 × 100 9.98 × 10−1 9.98 × 10−1 1.00 × 100

21 39 UBASH3A NM_001001895.3 9.93 × 10−1 8.75 × 10−1 9.98 × 10−1 1.00 × 100 1.00 × 100 9.98 × 10−1 9.98 × 10−1 1.00 × 100

21 53 ABCG1 NM_016818 9.98 × 10−1 8.75 × 10−1 9.98 × 10−1 1.00 × 100 1.00 × 100 9.98 × 10−1 9.98 × 10−1 1.00 × 100
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Figure 3. Using the CARET package in R, eleven machine learning (ML) algorithms were surveyed
to predict trisomy 21 (T21). Left panel displays performance based upon accuracy, and the right
panel displays the Kappa value. The bars represent the 95% confidence interval. Algorithms were
all trained on the randomly allocated 75% partition using 10-fold cross-validation, e.g., the training
dataset is randomly allocated into 10 parts and trained on 9 and tested on the one holdout, and this
was repeated 5 times. Abbreviations: GBM: gradient boosting machine; C50, classification of data
and decision tree algorithm C5.0; RF: random forest; adaboost, a decision tree model that uses a
boosting method to improve learning rate; NB: naïve Bayes, a classification method that is based on
Bayes’ theorem; Earth: multivariate adaptive regression splines model; MDA: flexible discriminant
analysis, LDA: linear discriminant analysis; NNET: neural network; SVM: support vector machine;
CART: classification and regression trees.

We were concerned either the imbalanced dataset (50 T21 cases vs. 948 controls) or
the training partition size might affect ML modeling outcomes. Thus, 4 statistical methods
to address class imbalance were employed: Oversampling, downsampling, ROSE, and
SMOTE, and the predictive accuracy and Kappa were measured across training partitions
ranging from 45–90% (Figure 4). In general, applying ROSE (broken line) and downsam-
pling (green line) tended to decrease the performance of the ML algorithms compared to
the ORIGINAL (black line) dataset, while applying oversampling (red line), and SMOTE
(blue line) tended to produce a modest increase in model performance. Predictive per-
formance (Kappa) using the original dataset tended to rise by increasing the size of the
training partition until it was 70–80%. Oversampling and SMOTE also tended to improve
performance over the original dataset when the training partition size was 70%.

Table 5 shows the top seven “important” variables used for the best GBM, C5.0,
and RF ML predictive modeling algorithms. The ML algorithms identified from 5 to 20
“important” variables but for simplicity only seven are shown in Table 5. The full dataset
is provided in Supplemental Table S6. ML algorithms identified “important” variables
mathematically, and it is interesting that in some ML models, differentially expressed
RNAs were “important” (highlighted by yellow or blue fill). For example, GBM used only
differentially expressed RNAs. In contrast, C5.0 and RF “important” variables were not
differentially expressed. Notably, GART was identified as “important” by C5.0 and RF
(highlighted by green fill) but was not differentially expressed (see Table 4). Note that many
of the variables were positively correlated (see Supplemental Table S4). Note that some
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of the best predicting models included maternal age. The most parsimonious model was
generated by the C5.0 method using only 5 miRNAs; that model had 99% accuracy and
a Kappa of 88%. Two models were performed without error and yielded AUCs of 1.00
(Table 5).

Figure 4. Effect of training partition size and class imbalance on three machine learning algorithms:
Random forest, C5.0, and GBM. (Panel A) (top) shows the workflow. First, the dataset was randomly
partitioned into training and testing (evaluation) sets from 45% of the data allocated to training, up
to 90% of the data. To evaluate the impact of class imbalance, four different methods were applied
that rebalance the class size. Specifically, oversampling, which randomly adds to the minority group
with repetition to parity; downsampling, which randomly eliminates from the majority group to
parity; or using ROSE or SMOTE, which are synthetic methods that created equal size groups using
different approaches. Next, three models, random forest, C5.0, or GMB, were trained using 10-fold
cross-validation with 5 repeats, then the performance of each model was evaluated using the holdout
dataset. The performance was evaluated using Kappa, and the results were plotted in (Panel B).
Note that generally, ROSE was ineffective at improving the algorithms, followed by downsampling.
In contrast, Smote and oversampling produced gains in performance for random forest, and less
consistently for C5.0 and GBM, compared to the original dataset.
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Table 5. Seven most important variables used in top-performing ML models.

GBM 70% Training 75% Training

Up sample Accuracy 1.000 Kappa 1.000 Up sample Accuracy 0.992 Kappa 0.912
Gene Name Ref Sequence Chromosome Attribute usage Weight Gene Name Ref Sequence Chromosome Attribute usage Weight
RASGRP4 NM_170604 19 166.77 0.193 hsa-mir-26b miRNA 2 179.19 0.196

hsa-mir-26b miRNA 2 131.32 0.152 RASGRP4 NM_170604 19 121.42 0.133
UBASH3A NM_018961.4 21 91.68 0.106 MA 85.02 0.093

NCAM2 NM_004540.5 21 88.98 0.103 NCAM2 NM_004540.5 21 82.56 0.090
COL6A1 NM_001848 21 56.96 0.066 ENSG00000207147 F2 snoRNA 21 76.16 0.083

MA 51.68 0.060 UBASH3A NM_018961.4 21 71.55 0.078
ICOSLG NM_015259 21 50.45 0.058 ENSG00000199856 F1 snoRNA 18 52.92 0.058

C5.0 80% training 70% training
Original Accuracy 1.000 Kappa 1.000 Up sample Accuracy 0.99 Kappa 0.8837

Gene Name Ref Sequence Chromosome Attribute usage Weight Gene Name Ref Sequence Chromosome Attribute usage Weight
GART mRNA/NM_000819 21 100.00 0.052 hsa-mir-98 miRNA X 70.78 0.260

hsa-mir-26b miRNA 2 100.00 0.052 hsa-mir-523 miRNA 19 69.05 0.253
hsa-mir-450b miRNA X 99.50 0.052 ENSG00000207147 F2 snoRNA 21 60.02 0.220

COL6A1 NM_001848 21 98.87 0.052 hsa-mir-569 F1 miRNA 3 50.98 0.187
ATP5O NM_001697.3 21 98.62 0.051 hsa-mir-216b miRNA 2 21.84 0.080

ENSG00000199633
F2 snoRNA 15 98.25 0.051

DOP1B NM_005128 21 98.12 0.051
RF 80% training 80% training

Up sample Accuracy 0.995 Kappa 0.945 Original Accuracy 0.995 Kappa 0.945
Gene Name Ref Sequence Chromosome Attribute usage Weight Gene Name Ref Sequence Chromosome Attribute usage Weight
hsa-mir-26b miRNA 2 31.29 0.085 GART mRNA/NM_000819 21 4.01 0.105
RASGRP4 NM_170604 19 27.15 0.073 hsa-mir-26b miRNA 2 2.73 0.071

MA 25.19 0.068 hsa-mir-450b miRNA X 2.61 0.068
ICOSLG NM_015259 21 20.69 0.056 PKNOX1 NM_004571 21 2.15 0.056

UBASH3A NM_018961.4 21 20.02 0.054 ENSG00000199282 snoRNA 13 2.10 0.055
DOP1B NM_005128 21 19.74 0.053 hsa-mir-376a-2/1 F2 miRNA 14 2.03 0.053

FAM20A NR_027751 17 17.87 0.048 ATP5O NM_001697.3 21 1.89 0.049
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The 5 top-performing ML algorithms containing 9 differentially expressed variables plus
MA yielded an average accuracy of >98.3% and kappa of >79.3% (see Supplemental Table S6).
In contrast, a selection of 9 variables of the highest average weight across the top five models
yielded an average accuracy of >98.8% and kappa of >89.4%. This shows that ML-based
predictive modeling generated models using not only RNAs found to be differentially
expressed by qRT PCR but also other RNAs not differentially expressed by qRT PCR.

4. Discussion
4.1. Main Findings

These results demonstrate for the first time that the maternal first trimester PCF tran-
scriptome is predictably altered by embryonic T21 and suggests that ML-based modeling
using a subset of differentially expressed RNAs and biographical variables might identify
T21 pregnancies with a prognostic accuracy similar to the current gold standard, PCF DNA.
The discovery mRNA and miRNA microarray study was conducted in 2011 and the qRT
PCR RNAs were identified in 2013. The 36 mRNAs combined with maternal age, weight,
and race yielded a prior unpublished model (83% DR, 0% FPR; CPW, YD, unpublished
observations) which was superior to the biochemical testing in clinical use at the time [64],
but not as accurate as PCF DNA [13].

While the maternal plasma transcriptome has not changed over the last decade, the
analytic tools have improved. We posited that the PCR RNA isolation and normalization
protocol we developed for the prediction of preterm birth [42] would be useful for pre-
dicting other pregnancy complications such as T21. Other researchers have suggested the
identification of a standardized RNA extraction and normalization protocol that provides
both high yield and high-quality RNA is essential for downstream analysis to become
reproducible and validated across RNA analysis methods and laboratories (e.g., see dis-
cussion in [41]). We believe the proprietary PCR RNA isolation protocol used in the
current study is an important component for reproducibility. Follow-on studies using RNA
isolated from placenta-derived extracellular vesicles should provide additional insight
into the source of these RNA T21 biomarkers [26,65] and support our thesis [42] and that
of others [26,40,66] that dysregulation of placental physiology is an antecedent to many
pregnancy complications.

It was a concern that our microarray “Discovery” failed, e.g., the microarray was
insufficiently sensitive to detect differentially expressed RNAs. To address this concern,
we stratified the microarray data by effect size and performed qPCR analysis on candidate
RNAs. We posited that since qPCR has greater sensitivity than microarray, and since the
smaller cohort reduces the FDR correction factor by reducing the number of comparisons
per trial, differentially expressed RNAs would be found. Moreover, it was with this
approach that differentially expressed RNAs were identified for testing in the next stage of
the workflow. Using qRT-PCR in the initial validation, the method applied to correct FDR
impacts the number of significant differentially expressed RNAs, and the use of nested
RT-PCR was sufficient to detect 9–15 differentially expressed RNAs. Both Q-values and
Benjamini–Hochberg discovered the same set of 15 differentially expressed RNAs. The
most conservative FDR correction methods, Holm, Hochberg, Hommel, and Bonferroni,
found the same set of nine differentially expressed RNAs. Of these nine RNAs, five
originate on chromosome #21. Interestingly, ML independently identified “important
predicting variables” that overlapped with the differentially expressed RNAs (highlighted
yellow or blue in Tables 4 and 5). Also of interest, ML through its mathematical process
identified other “important predictive variables”, such as GART, highlighted in green in
Tables 4 and 5. GART would not have been considered as a predictor of T21 if one only
considered RNAs found to be “significantly different”. On the other hand, the ERG fusion
gene, found to be differentially expressed following Q-values and Benjamini–Hochberg
FDR correction, was not an “important predictor for ML” for ML algorithms tested here.

ML classification allowed for the first time the prediction of embryonic T21 using a
minimally invasive maternal sample collected at 11–13 weeks [67]. The improvement in
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accuracy over our earlier effort was dramatic, yielding algorithms with predicted AUCs
up to 1.00. Just as important, the approach permitted test simplification, reducing the
number of RNA markers down from the original 54 to a more manageable number. In
retrospect, we found that many of the prospective biomarker RNAs were highly correlated
(Supplemental Table S4). It is likely that this reduces the efficiency of ML-based variable
selection, and a refinement of the biomarker list to include variables with low correlation
might further improve ML classification. The heteroscedastic nature of qPCR and qRT-PCR
data is a concern for regression analysis, analysis of variance, and ML methods that assume
a linear relationship between independent and dependent variables. Decision tree methods,
support vector machine, naïve Bayes, and regression machine learning methods were
employed here because they are less sensitive to these features.

It is unclear whether the chromosome location of the gene of origin is a good predictor
of RNA importance. For example, 5 of 9 or 9 of 15 differentially expressed RNAs originated
from chromosome #21 (Table 4). However, as shown in Table 5, most ML algorithms found
RNAs originating from genes located on other than the #21 chromosome to be “important
predictors”. The number of RNAs from chromosome #21 ranged from more than half
for GBM methods to one algorithm that consisted of five noncoding RNA predictors
with only one of which originated from genes on the #21 chromosome (Group 2, up.c50,
70% training).

4.2. Strengths and Limitations

One strength of the current investigation is its novelty. This is only the second
published study of plasma transcriptome changes linked to a chromosomal abnormality,
whether from an affected individual or a pregnant woman with an affected embryo/fetus.
It is also the first to be successfully validated. Further, this appears to be just the second
application of ML to a plasma transcriptome dataset, and the result was a dramatic im-
provement in predictive accuracy and a reduction in the number of RNAs required. A
second strength of the study was the proprietary plasma RNA extraction that increases total
RNA yield per milliliter to microgram quantities compared to the nanogram amounts with
commercial kits [68,69]. The high-quality RNA resulted in consistency of expression across
the normal control group, as indicated by Figure 1, left, and subsequent initial validation in
an independent cohort using qRT-PCR. No PCF RNA test can be reproducible if the RNA
extraction is not.

One limitation of the study is its case-control design with a relatively high T21 preva-
lence (50% in discovery/confirmation and 5.0% in the initial validation). While the results
should be applicable to the general population because the differentially expressed markers
are likely due to the presence of an extra #21 chromosome, there are important unknowns
to resolve. First, we do not know the origin of the RNA markers (embryo/placenta, mother,
or some combination). While our experience with preterm birth [42] suggests they are
likely from the placenta, it is possible unrecognized maternal mosaicism might lead to
a false-positive test. Second, we narrowed our outcomes to normal “controls” and T21
“cases”. We do not know whether embryonic mosaicism (which represents 2–3% of all
T21s) or confined placental mosaicism will alter the maternal plasma transcriptome in the
same fashion. It has been suggested that the impact of mosaicism is inversely related to
the percentage of cells affected [70] and that the long-term prognosis of children from a
pregnancy with confined placental mosaicism is reassuring [71], though follow-up studies
of both conditions are sparse. However, if true, and the plasma transcriptome reflects
the phenotype of the disorder, an inability to detect a mosaic T21 may provide valuable
ancillary information regarding the postnatal phenotype of the child. Third, blood was
sampled at 11–13 weeks of pregnancy. It is possible that samples obtained later in gestation
might lead to different results. Similarly, additional work is needed to evaluate RNA
isolation efficiency, normalization RNAs, and RNA biomarkers across gestation to expand
understanding of the T21 predictive performance over the pregnancy. Fourth, several
RNAs used for ML had high degrees of correlation. Ideally, one would remove correlated



Diagnostics 2022, 12, 1410 18 of 23

variables prior to ML to increase the efficiency to identify important predictors. Finally,
all pregnancies studied were singletons. We have no experience with dizygotic multiple
gestations and worry that this would compromise test accuracy by marker dilution since
8 of the 11 RNA markers used by the two best-performing prognostic algorithms display
reduced expression in T21 compared to normal controls. Dilution would increase the
false-positive rate.

4.3. ML Results

Classification by ML employs mathematical tools to predict class, e.g., case or control,
and, as such, is a branch of artificial intelligence. One advantage of ML is it lacks underlying
predispositions or user biases. It uses numerical methods to identify salient features, or, in
this instance, RNAs predictive of T21. Importantly, large data sets can be rendered tractable
through the application of ML. Generally, those datasets number in the tens or hundreds
of thousand samples. Here, the use of one thousand samples is still on the “low end” of
ML’s powerband and a larger dataset could improve ML modeling. ML methods may
be affected by imbalanced datasets. We found improved performance by applying two
methods that specifically address class imbalance. In addition to the impact of dataset size
and class imbalance, ML is subject to overfitting, which means our predictive accuracy and
Kappa values may be overly optimistic.

ML has proven robust and efficient at “mining”, e.g., extracting salient features from
large datasets. Importantly, tree-based ML algorithms are not strongly affected by the
lack of normality or constant variance as is characteristic of qPCR and other genomic
datasets, in contrast to linear regression or ANOVA methods statistical inference based
upon homoscedastic, normality, and unimodal data assumptions. While we posited that
tree-based methods might be most useful here, there are no a priori rules to prospectively
identify optimal ML algorithms. The CARET package in R contains more than 130 ML
algorithms to evaluate, some are regression based, and must be modified for classification.
Here, we employed a simplified workflow and sampled 11 of these 130 algorithms.

Because class imbalance can affect the efficiency of ML modeling [72–74], we investi-
gated this possibility by using four methods: Oversampling, downsampling, ROSE, and
SMOTE. These methods employ different tactics to balance class in the training dataset
(see [75] for a detailed discussion). Differences in the efficiency of the four methods for
model training were revealed by their predictive performance on the independent test data.
Oversampling and SMOTE generally improved performance over the original dataset,
while downsampling and ROSE generally decreased performance. Models trained using
partition sizes >66% and <85% performed better at predicting T21. While our results
are encouraging and show improvement over previous modeling efforts, the testing of a
new, independent, and more diverse patient population is necessary to validate/refine the
predictive models and determine whether they hold up across race and ethnic groups and
across gestational epochs. Furthermore, it may be possible to improve the predictive power
with little to no added cost by the inclusion of both maternal and paternal age and other
biographical variables. Fortunately, the implementation of “simple” qRT-PCR technology
coupled with the minimally invasive sampling early in pregnancy lowers the barriers to
follow-on this work.

One interesting finding was that ML used some, but not all the RNAs found to be
differentially expressed. For example, the ERG fusion gene was found to be differentially
expressed after FDR correction via Q-values and Benjamini–Hochberg method. This vari-
able was not found as an important variable in any of the ML models shown (see Table 5).
In contrast, ML identified some important predictor variables that were not differentially
expressed as important ones, e.g., GART. Since ML uses mathematical rather than statistical
methods to learn and predict class, it is interesting ML independently identified many
chromosome #21 and differentially expressed RNAs as important predictors. In the future,
it might be valuable to prioritize markers by clustering via gene ontology, pathway, or
Bayesian-like convergent functional genomics approach [76,77].
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4.4. Interpretation

Our a priori assumption was that RNAs originating from genes on the #21 chromosome
genes would be overrepresented as markers and overexpressed. That assumption proved
incorrect, and the impact of the extra #21 chromosome on transcription is broader, impacting
the transcription of genes on numerous chromosomes including the X chromosome. It is
likely that most if not all the differentially expressed RNAs are related to the presence of
the extra #21 chromosome in the conceptus regardless of the location of the chromosome
of origin. If true, it is equally likely the maternal transcriptome will be altered by other
significant aneuploidies, such as T13, T18, and XO. If these chromosome disorders are
like T21, e.g., amenable to the identification of predictive maternal PCF RNA markers, a
high-throughput PCR ‘aneuploidy’ card might be generated, assembled, and tested for
USD 100 or less when run at scale (exclusive of sample transportation). Further, a single
500 µL PCR RNA extraction yields enough RNA to run both an aneuploidy panel and a
panel for the prediction of PTB ≤ 32 weeks [42], potentially providing a universal screening
tool at low overall costs.

5. Conclusions

Maternal PCF RNA and biographical predictors in ML-based classification algorithms
may provide very good to excellent predictive accuracy for embryonic T21. These results
support the further validation of PCF RNA as a low-cost T21 screening tool at 11–13 weeks
of pregnancy.
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