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GWAS meta-analysis of intrahepatic cholestasis of
pregnancy implicates multiple hepatic genes and
regulatory elements
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Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disorder affecting

0.5–2% of pregnancies. The majority of cases present in the third trimester with pruritus,

elevated serum bile acids and abnormal serum liver tests. ICP is associated with an increased

risk of adverse outcomes, including spontaneous preterm birth and stillbirth. Whilst rare

mutations affecting hepatobiliary transporters contribute to the aetiology of ICP, the role of

common genetic variation in ICP has not been systematically characterised to date. Here, we

perform genome-wide association studies (GWAS) and meta-analyses for ICP across three

studies including 1138 cases and 153,642 controls. Eleven loci achieve genome-wide sig-

nificance and have been further investigated and fine-mapped using functional genomics

approaches. Our results pinpoint common sequence variation in liver-enriched genes and

liver-specific cis-regulatory elements as contributing mechanisms to ICP susceptibility.
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Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-
specific liver disorder affecting ~0.5–2% of pregnant women.
The majority of cases present in the third trimester with

pruritus. The diagnosis is confirmed by elevated maternal total
serum bile acids (TSBA) and abnormal serum liver tests1. Ele-
vation of maternal TSBA ≥40 µmol/L is associated with an
increased incidence of adverse pregnancy outcomes2,3, and a large
meta-analysis of ICP cases identified 100 µmol/L as the threshold
at which the risk of stillbirth increases4.

ICP has a complex etiology, with genetic, endocrine, and
environmental contributions. A variable geographical prevalence
has also been observed with this disease. This may be explained
by genetic variation in women of different ancestry, or could be
the result of altered environmental factors, e.g., vitamin D or
selenium deficiency5. The cholestatic effect of gestational eleva-
tions of estrogen and progesterone metabolites unmasks the
disease in genetically susceptible individuals6,7. Rare mutations in
the hepatobiliary transporter genes ABCB4 and ABCB11
(encoding the phosphatidyl choline floppase and the bile salt
export pump, respectively) have been reported, with the most
recent study identifying pathogenic or likely pathogenic hetero-
zygous mutations in either of these two genes in up to 25% of
cases of severe, early-onset ICP8. A limited role has been pro-
posed for rare genetic variants in other known cholestatic loci9. In
contrast with rare variants, the contribution of common genetic
variation to the heritability of ICP has not been systematically
addressed thus far. Candidate gene analyses have been reported10

but to date the only genome-wide study of ICP has employed
admixture mapping of genetically distinct populations11. Here,
we utilized the recent whole-genome sequencing study by the
NIHR BioResource Rare Disease collaboration (NIHR-RD) and
the 100,000 Genomes Project (100KGP)12 along with data from
the FinnGen Consortium to systematically identify common
variants that contribute to ICP susceptibility. We have performed
the first GWAS and meta-analyses for ICP, examining >7 million
common sequence variants in 1138 cases of ICP compared to
153,642 non-ICP controls. This resulted in the identification of 11
genome-wide significant loci associated with ICP. The application
of a functional prioritization pipeline further enabled the identi-
fication of liver-enriched genes and liver-specific cis-regulatory
elements as likely effectors of ICP risk.

Results and discussion
GWAS and GWAS meta-analyses for ICP. GWAS were first
performed using the NIHR-RD (https://bioresource.nihr.ac.uk/
using-our-bioresource/our-cohorts/rare-diseases/) and 100KGP
(https://www.genomicsengland.co.uk/initiatives/100000-genomes-
project) data separately (Supplementary Fig. 1). In the NIHR-RD,
303 patients with ICP (severe, early-onset disease with symptoms
by 33 weeks’ gestation and maternal TSBA ≥ 40 µmol/L) were
recruited. For women that used hormonal contraception, 15/254
(5.9%) reported itching when used and 39/256 reported cyclical
itching. In addition, 15/247 patients (6.1%) reported drug-induced
itching (other than for contraception). In the 100KGP, 225 indi-
viduals with an International Classification of Diseases (ICD) code
for ICP were identified across all 100KGP study cohorts. For each
of these datasets, common (minor allele frequency (MAF) ≥0.01)
high-quality variants were extracted from the whole-genome
sequence data. An unrelated subset of individuals of genetically
defined European (EUR) ancestry (Supplementary Fig. 2), was
identified by kinship coefficient estimation and principal compo-
nent analysis. After quality control, the NIHR-RD dataset com-
prised 216 cases and 8436 controls with 8,291,828 variants, and
the 100KGP dataset comprised 182 cases and 45,585 controls with
9,429,238 variants. A GWAS was performed in each cohort

separately using a generalized mixed model association test with
saddle-point approximation to adjust for case–control imbalance
using SAIGE13 with sex and ten principal components (PCs) as
covariates. The resulting summary statistics for variants with
matching alleles and allele frequencies between the two datasets
were then meta-analyzed using METAL14, weighting the effect
size estimates using the inverse of the standard errors. Variants
showing heterogeneity of effect between the two datasets
(P < 1 × 10−5) were excluded. In total, 8,199,999 variants were
meta-analyzed and four loci were identified as achieving genome-
wide significance (P < 5 × 10−8) (Supplementary Figs. 1, 3a). The
genomic inflation (lambda) was 1.01 (Supplementary Fig. 3c),
indicating no significant population stratification.

To enhance the power for genetic discovery, we meta-analyzed
the NIHR-RD/100KGP (UK) ICP GWAS meta-analysis summary
statistics with GWAS data from FinnGen (Release 4) (https://
www.finngen.fi/en). FinnGen is a public-private partnership
combining digital health record data from Finnish health
registries with genotyping data from Finnish Biobanks. Release
4 includes association data at 16,962,023 variants for 2444
endpoints in 176,899 Finnish individuals. As with the 100KGP,
cases of ICP were identified based on ICD codes. There were 740
cases and 99,621 controls following FinnGen phenotype evalua-
tion. GWAS was performed by FinnGen using SAIGE13 with sex,
age, 10 PCs, and genotyping batch as covariates. Analysis of the
summary statistics for the FinnGen ICP GWAS revealed seven
loci achieving genome-wide significance (Supplementary Figs. 1,
3b, d), including the four loci identified in the UK meta-analysis.
After allele matching, allele frequency matching, and removal of
heterogeneous effects, 7,715,762 variants were available for meta-
analysis across all three cohorts. In total, 11 loci achieved the
genome-wide significance threshold (P < 5 × 10−8), (Fig. 1,
Table 1, and Supplementary Fig. 1) and the genomic inflation
(lambda) for the overall meta-analysis was 1.027 (Supplementary
Fig. 3e). Summary statistics for the lead variants in each of the
separate GWAS and meta-analyses are provided in Supplemen-
tary Data 1.

Conditional and joint (GCTA-COJO)15 analyses in each of the
genome-wide significant loci demonstrated a single signal underlying
each association. Testing for epistatic interactions was performed
across all 55 possible pairs of the 11 risk variants in NIHR-RD and
100KGP (for which full genotype data were available) separately with
PLINK16 and the resulting P values were combined using Fisher’s
method. No significant interactions were identified after correcting
for multiple testing based on 55 comparisons (P < 0.0009). Post hoc
power calculations based on the size of the cohort utilized for the
combined meta-analysis demonstrated 80% power to detect effects
with an odds ratio (OR) > 1.3 at MAF= 0.5 and OR > 1.7 at
MAF ≥ 0.05 (Supplementary Fig. 4).

Functional fine-mapping of causal variants at ICP suscept-
ibility loci. The liver is a central organ in the development of ICP,
as evidenced by the fact that most known ICP causal mutations
affect liver-specific genes8,9 (Supplementary Fig. 5a). Moreover,
unbiased analysis of the 11 ICP association signals from our
GWAS highlighted that the expression of genes within these loci
is highly liver-specific (Supplementary Fig. 5b) and relate to
pathways involved in bile acid and lipid metabolism (Supple-
mentary Fig. 6). We, therefore, reasoned that both coding and
noncoding ICP risk variants likely affect liver-specific genes and/
or cis-regulatory elements (CREs). In order to gain insights into
the genetic mechanisms driving ICP susceptibility and identify
likely causal variants, we carried out functional fine-mapping of
the 11 association signals detected in the meta-analysis using
PAINTOR17 to calculate the probability of a variant being causal
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at a given locus considering not only its strength of association
but also functional annotation data (Fig. 2). We included adult
liver tissue active chromatin features in the datasets used to
prioritize causal variants, including accessible chromatin regions
and those enriched in H3K27ac (see “Methods”). This analysis
enabled the prioritization of nine variants with a high functional
posterior probability (PPfunc > 0.8) across eight ICP susceptibility
loci (Supplementary Data 2). For the remaining three loci, which
did not include any protein-altering variant, we assumed that
variants residing within active liver CREs were more likely
functional. We thus defined a high-confidence set of human liver
accessible chromatin sites using ATAC-seq profiles from four
whole liver samples (data from ENCODE18, see “Methods”),
which allowed us to further prioritize one likely causal variant at
each remaining locus (Table 2).

ICP coding variant analysis. Three ICP signals (SERPINA1,
GCKR, and HNF4A) hosted a single missense coding variant with

high likelihood of being causal, with functional posterior prob-
abilities above 99% and a pathogenicity score CADD >1019

(Fig. 3). From these three signals, the one with the strongest
association with ICP susceptibility was rs28929474 in the SER-
PINA1 gene, which encodes alpha-1-antitrypsin, a major plasma
serine protease inhibitor (Fig. 3a). This variant has been exten-
sively reported in the literature as the SERPINA1 Z allele, an
amino acid substitution of Glu342Lys that causes alpha-1-
antitrypsin deficiency20 and is associated with cystic fibrosis
liver disease21. The two other missense variants alter the
sequences of the GCKR (glucokinase regulatory protein) and
HNF4A (hepatic nuclear factor 4 alpha) (Fig. 3b, c), genes that are
essential for hepatic metabolic homeostasis and when mutated
may lead to monogenic diabetes22. We examined the potential
functional impact of these coding variants through the querying
of the ClinVar variant interpretation database and Metadome
analysis23. At GCKR, we identified an ICP risk variant, rs1260326
(Leu446Pro), which has been previously associated with altered
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Fig. 1 Manhattan plot for the genome-wide association study meta-analysis of intrahepatic cholestasis of pregnancy (ICP). Data shown are from the
combined meta-analysis including 1138 cases and 153,642 controls, all of European ancestry. The chromosomes are ordered on the x axis; the y axis shows
the −log10(P) values for the association tests. Eleven loci achieved genome-wide significance (P < 5 × 10−8, indicated by the red line). The prioritized gene
at each locus is shown. The effector gene functional prioritization strategy followed in this study is presented in Fig. 2. Association testing was performed
using a generalized logistic mixed model to account for population stratification and saddle-point approximation to control for type 1 error rates due to
unbalanced case–control ratios, followed by meta-analysis weighting the effect size estimates using the inverse of the standard errors.

Table 1 Association statistics of the eleven loci achieving genome-wide significance (P < 5 × 10−8) in the genome-wide
association study meta-analysis of intrahepatic cholestasis of pregnancy (ICP).

Chr Position Variant (rsID) Non-risk allele Risk allele UK Freq Finn Freq OR 95% CI P

2 27508073 rs1260326 T C 0.598 0.650 1.43 1.35–1.52 6.84E-16
2 43844604 rs4148211 G A 0.608 0.556 1.70 1.61–1.78 1.72E-33
2 169074756 rs66927685 TGAACCTTAGAGACTGAAGAA T 0.455 0.430 1.42 1.33-1.5 7.83E–16
4 76490987 rs13146355 G A 0.451 0.456 1.27 1.19–1.36 2.00E–08
7 87500928 rs5885586 TG T 0.821 0.833 1.63 1.51–1.74 7.83E–17
8 58480178 rs10107182 T C 0.341 0.377 1.50 1.41–1.58 1.95E–19
14 94378610 rs28929474 C T 0.021 0.020 7.09 6.74–7.43 1.04E–28
17 79732281 rs34491636 A G 0.217 0.231 1.36 1.26–1.46 2.62E–09
19 35552195 rs2251250 C T 0.379 0.321 1.34 1.25–1.42 1.41E–10
19 47867143 rs296384 G T 0.837 0.847 1.46 1.34–1.58 2.50E–10
20 44413724 rs1800961 C T 0.030 0.045 2.06 1.84–2.29 3.42E–10

Chromosome (Chr), position (Build 38), and rsID are given for the lead variant (variant with the lowest P value) at each locus. For each variant, the risk allele has been indicated (the allele that is more
common in cases than controls) with the corresponding odds ratios (OR). The frequencies of the risk alleles in control individuals in the UK (UK Freq) and Finnish (Finn Freq) datasets are shown.
Association testing was performed using a generalized logistic mixed model to account for population stratification and saddle-point approximation to control for type 1 error rates due to unbalanced
case–control ratios, followed by meta-analysis weighting the effect size estimates using the inverse of the standard errors.
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serum fasting plasma glucose and triglyceride concentrations24,25

and nonalcoholic fatty liver disease (NAFLD)26. Previous func-
tional studies of this variant have indicated that the risk allele in
this locus is associated with increased glucokinase activity in the

liver27. At HNF4A, a single variant was associated with ICP
susceptibility, rs1800961 (Thr139Ile), which Metadome analysis23

predicted to be deleterious for protein function (Supplementary
Fig. 7a).

Functional prioritization of noncoding variants at lipid and
bile acid homeostasis loci. At the remaining loci identified in the
GWAS meta-analysis for ICP, we observed that seven of the
eleven loci contained noncoding and synonymous variants
(examining the 95% genetic credible set, as well as the lead variant
and those in linkage equilibrium at r2 > 0.8 in EUR individuals).
This observation is in line with previous reports suggesting that
common sequence variation predominantly contributes to human
disease via disruption of noncoding cis-regulatory elements28,29.
We therefore took advantage of the functional fine-mapping
strategy described above, along with the integration of adult liver
epigenomic datasets and pathogenicity measures, to further dis-
sect the causal mechanisms at play in each ICP locus (Fig. 2, see
“Methods”).

In the liver, the family of ABC transporters play central roles in
numerous physiological processes, including the export of
cholesterol, bile salts, bilirubin, and drug conjugates. Three
ABC transporter gene loci (ABCG5/8, ABCB1/4, and ABCB11)
contained ICP GWAS signals (Fig. 4). ABCG5 and ABCG8
together encode a heterodimeric cholesterol transporter,
expressed in hepatocytes and intestinal cells30. A missense
polymorphism in ABCG8, Tyr54Cys (rs4148211), was identified
as the lead variant at this locus (Fig. 4a). However, Metadome
analysis23 indicated that this protein sequence change is expected
to be tolerated (Supplementary Fig. 7b and Supplementary
Data 3), suggesting that this or other variants in linkage
disequilibrium (LD) have a different type of functional impact
at this locus. Combined analysis of adult liver epigenomic datasets
and a high-throughput reporter assay dataset from liver cells
(Survey of Regulatory Elements, SuRE31), indicated that the lead
variant rs4148211 (PPfunc > 0.99) resides within a hepatic CRE
and its risk allele is associated with allele-dependant transcrip-
tional activity in liver cells (P= 9.1 × 10−4), where the risk allele
is associated with transcriptional repression (Fig. 4b and
Supplementary Fig. 7c). Analysis of the SuRE assay dataset from
liver cells revealed seven additional ICP-associated variants in the
ABCG8 locus for which the risk allele associates with

Bayesian fine mapping with PAINTOR

PPfunc > 0.8

Prioritised
variant

Yes No

Coding
(Missense, nonsense)

Noncoding

Intersection of all ICP variants with 
adult liver ATAC-seq sites

No

Prioritised
variant

Yes

No prioritised
variant

All variants in high LD with lead
(EUR R2 > 0.8)

ICP GWAS meta-analysis

Pathogenic
(ClinVar, CADD, Metadome)

No

Prioritised
variant

Yes

Prioritisation of effector gene
(Liver specificity, eQTLs, HiC contacts)

Coding
(Synonymous)

95% Meta-analysis credible set

Fig. 2 Flowchart describing the variant prioritization strategy followed
for the eleven loci reaching genome-wide significance in the GWAS
meta-analysis of ICP. Sequential steps used to prioritize the variants are
shown with the different approaches for nonsynonymous, synonymous, and
noncoding variants indicated.

Table 2 Prioritized variants and genes within each of the eleven ICP genome-wide significant loci.

Lead variant Functional prioritization

Chr Position rsID Gene Variant (rsID) Same
as lead

Non-risk Risk Functional impact

2 27508073 rs1260326 GCKR rs1260326 Yes T C Coding, missense
2 43844604 rs4148211 ABCG5/8 rs4148211 Yes G A CRE
2 169074756 rs66927685 ABCB11 rs66927685 Yes TGAACCTTAGAGACTGAAGAA T CRE
4 76490987 rs13146355 SCARB2 rs4859682 No C A CRE
7 87500928 rs5885586 ABCB1/4 rs55747905 No C T CRE, creation of TCF7L2-

binding site
8 58480178 rs10107182 CYP7A1 rs10504255 No A G CRE, disruption of DMRTA1-binding

site, and decreased gene expression
14 94378610 rs28929474 SERPINA1 rs28929474 Yes C T Coding, missense
17 79732281 rs34491636 ENPP7 rs9916601 No C T CRE, increased gene expression
19 35552195 rs2251250 TMEM147 rs4806173 No C G CRE, creation of NC3R1-binding site

and decreased gene expression
19 47867143 rs296384 SULT2A1 rs296361 No G A CRE, creation of SOX-D-binding site

and decreased gene expression
20 44413724 rs1800961 HNF4A rs1800961 Yes C T Coding, missense

The chromosome (Chr), position (Build 38), and rsID are given for the lead variant (variant with the lowest P value) in each locus are shown along with the gene, rsID, risk, and non-risk alleles and
functional impact following in silico functional prioritization.
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transcriptional repression (Supplementary Fig. 7c). However,
only one overlapped a hepatic CRE (rs4148204) and none of
them was prioritized as likely causal by PAINTOR (Supplemen-
tary Data 2).

The ICP association signal on chromosome 7 spanned a
genomic segment including the genes ABCB1 and ABCB4
(Fig. 4c), which encode for the Multidrug Resistance Proteins 1
and 3 (MDR1 and MDR3), respectively. Whilst the lead variant in
this locus did not overlap a coding sequence or active hepatic
CRE, we prioritized the variant rs55747905 as likely functional
(PPfunc= 0.94), which overlapped an active enhancer element
(accessible chromatin enriched in H3K27ac) (Fig. 4c). Transcrip-
tion factor binding motif disruption analysis further revealed that
the risk allele of rs55747905 (C) disrupts a recognition sequence
for the Wnt signaling transcription factor TCF7L2 (Fig. 4d).

At the third ABC transporter locus, we prioritized ABCB11 as
the gene mediating the ICP susceptibility process. In this case,
functional fine-mapping with PAINTOR enabled the prioritiza-
tion of a single variant residing in an intronic liver enhancer in
the DHRS9 gene (Fig. 4e). However, analysis of ENCODE18

RNA-seq data revealed that DHRS9 has very weak expression in
adult liver, in contrast with ABCB11, which encodes the bile salt
export pump (BSEP).

The ICP association signal on chromosome 8 is located
between the UBXN2A and CYP7A1 genes (Fig. 5a). UBXN2A
encodes a ubiquitin-like protein involved in proteasomal
degradation32 and CYP7A1 encodes the enzyme (cholesterol 7
alpha-hydroxylase) responsible for the first and rate-limiting step
in bile acid biosynthesis in hepatocytes33. At this locus, only one
regulatory variant was prioritized, rs10504255, which resides in

an active liver enhancer. Unlike the lead variant at this locus
(rs10107182), the prioritized variant reached a high functional
posterior probability (PPfunc > 0.99 vs. <0.01) and had a high
pathogenicity score (CADD= 12.9 vs. 5.8). Furthermore, analysis
of GTEx34 eQTL data revealed that rs10504255 is associated with
allele-dependant expression of UBXN2B in human liver (Fig. 5b),
where the risk allele (G) is associated with weaker transcriptional
activity (P= 6.18 × 10−6). Even though this variant was not a
statistically significant eQTL for CYP7A1 in the GTEx database
(P= 0.15), we observed a similar trend on the direction of effect
of the risk allele (Fig. 5b) and previous chromatin conformation
capture and genome editing studies in human hepatocytes have
linked this CRE with the modulation of CYP7A1 expression35.
These previous studies, combined with the functional significance
of CYP7A1 in bile acid homeostasis, led us to prioritize CYP7A1
as the major effector transcript in this locus. Motif analysis
further revealed that the risk allele disrupts a binding site for the
transcription factor DMRTA1 (Fig. 5c).

In addition to CYP7A1, the ICP GWAS meta-analysis
identified another important locus for bile acid homeostasis,
SULT2A1, which encodes the enzyme Sulfotransferase 2A1,
highly expressed in the liver and capable of phase II metabolism
of bile acids36 (Fig. 5d). Here, a variant in the promoter of
SULT2A1 was prioritized (rs296361), with the risk allele
conferring lower SULT2A1 expression in the liver
(P= 1.31 × 10−7) (Fig. 5e), likely through the creation of a
binding site for the family of transcriptional repressors SOX-D
(Fig. 5f). We note that the prioritized variant also associated with
allele-dependent effects on the expression of a nearby long
noncoding RNA (LINC01595, P= 1.02 × 10−50), albeit in the
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Fig. 3 Analysis of intrahepatic cholestasis of pregnancy (ICP) association signals uncovers three coding risk variants affecting the SERPINA1, GCKR,
and HNF4A genes. a–c Regional association and linkage disequilibrium (LD) plots for the ICP signals at SERPINA1, GCKR, and HNF4A, respectively. The y
axis represents the −log10(P) values for the association test from the GWAS meta-analysis of ICP (1138 cases and 153,642 controls) and the x axis the
chromosomal positions (GRCh38/hg38). The SNP with the lowest p-value in the locus is indicated by a purple diamond. The remaining SNPs in the region
are colored according to their r2 with the lead SNP (r2 calculated using 1000 Genomes European (EUR) reference). The dotted gray line represents the
genome-wide significance threshold of 5 × 10−8. Plots were generated using LocusZoom61. Association testing was performed as described in Fig. 1.
Zoomed insets reveal the prioritized coding variant at each locus, with functional posterior probability (PPfunc) above 0.99. PPfunc were calculated using
PAINTOR17. All three variants showed Combined Annotation Dependent Depletion (CADD) scores19,84 above 10, which is usually considered the
threshold for pathogenic variants. Further details on coding variant analysis are provided in Supplementary Data 3. 95% PP ICP variants, variants within the
95% genetic credible set in the ICP meta-analysis. LD ICP variants, variants with EUR r2 > 0.8 with the meta-analysis lead variant.
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opposite direction. This discrepancy may reflect an indirect effect
of the expression of SULT2A1 on LINC01595.

Functional prioritization of previously uncharacterized ICP
genes. We next explored the remaining three ICP-associated
signals where the closest genes were not directly involved in lipid
and bile acid homeostasis. On chromosome 19, even though it
was not possible to employ PAINTOR for functional fine-
mapping due to the presence of ambiguous alleles (A/T or G/C),
we prioritized the variant rs4806173 based on its overlap with a
hepatic CRE (Fig. 6a). This variant resides in an intron of the
testis-specific gene GAPDHS37. We thus queried eQTL GTEx34

data to identify potential targets of this regulatory variant in liver
tissue. This analysis led us to pinpoint TMEM147 (transmem-
brane protein 147) as the likely effector transcript of this asso-
ciation signal, with the risk allele associating with lower hepatic
gene expression (1.52 × 10−40) (Fig. 6b). Using transcription
factor motif disruption analysis, we detected that the risk allele of
rs4806173 creates a recognition sequence for the glucocorticoid

receptor (Fig. 6c), which has been previously reported to act as
either a gene expression activator or repressor in a context-
dependent manner38,39. Recent studies in HeLa cells have linked
loss of TMEM147 with increased cholesterol uptake40 supporting
the role of this gene as an effector of ICP genetic susceptibility.

Similarly, we prioritized ENPP7 as the likely effector transcript
driving the association signal in chromosome 17 (Fig. 6d, e), with
the risk variant (T) associating with increased ENPP7 expression
(Fig. 5e). ENPP7 encodes the alkaline sphingomyelinase (Alk-
SMase) that is present in the intestinal tract and bile, and
responsible for the digestion of sphingomyelins in a bile salt-
dependent manner41. Previous studies have suggested that Alk-
SMase promotes intestinal cholesterol absorption42.

The final signal encompassed intronic variants in the
SHROOM3 gene, including one variant in a hepatic CRE
(rs4859682) (Fig. 7a). However, analysis of liver eQTLs did not
assist in the identification of potential effector transcripts in the
locus. Topologically associating domains (TADs) correspond to
self-interacting genomic domains that contain genes and
regulatory elements that interact more frequently with each
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Fig. 4 Three ABC transporter gene loci are associated with intrahepatic cholestasis of pregnancy (ICP). a, c, e LocusZoom61 plots showing the
association signals at ABCG8, ABCB1/4, and DHRS9, respectively. The LocusZoom plots are as per Fig. 3 and association testing was performed as
described in Fig. 1. At each locus, a single noncoding variant was prioritized as likely causal following the strategy outlined in Fig. 2. All epigenomic and
transcriptomic datasets shown were retrieved from ENCODE18. Adult liver ATAC-seq peaks track (green regions) corresponds to regions accessible in at
least two out of four ENCODE adult liver ATAC-seq (see Methods). 95% PP ICP variants, variants within the 95% genetic credible set in the ICP meta-
analysis. LD ICP variants, variants with EUR r2 > 0.8 with the meta-analysis lead variant. PPfunc, functional posterior probability calculated using PAINTOR17.
CADD, combined annotation-dependent depletion. a Zoomed inset shows a coding variant at ABCG8 overlapping a hepatic transcriptional enhancer, as
revealed by strong H3K27ac enrichment and accessible chromatin in adult female liver tissue. Metadome analysis did not suggest that this variant affects
protein function (see Supplementary Fig. 7). b Allele-specific effect of the prioritized risk variant rs4148211, assessed by Survey of Regulatory Elements
(SuRE) in HepG2 cells31. The results suggest that the risk variant associates with decreased transcriptional activity. Mean signal and two-sided Wilcoxon
rank-sum test. Previously determined 5% false-discovery rate threshold: P < 0.0017312131. Source data are provided as a Source Data file. c, e Zoomed
insets show two prioritized regulatory risk variants for ICP: one affecting a hepatic enhancer between ABCB1 and ABCB4 (c), and one affecting a hepatic
enhancer in an intron of DHRS9 (d). We note however that DHRS9 is not expressed in liver tissue, as shown in the strand-specific RNA-seq tracks. In
contrast, ABCB11 is highly expressed in this tissue making it a likely effector transcript in this locus.
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other than with other regions43. We thus carried out a systematic
analysis of all genes located in the TAD that contains this ICP
association signal, interrogating their expression in liver tissue
(Fig. 7b) and their liver-specificity (Fig. 7c). Given the liver-
specificity of most ICP genes (Supplementary Fig. 5b), we decided
to further investigate genes whose expression is both high and

specific in liver tissue. Two genes met these criteria: STBD1 and
SCARB2 (Fig. 7c). We then investigated human liver Hi-C maps
in order to find out whether there were long-range 3D chromatin
contacts between the prioritized causal variant rs4859682,
SHROOM3 (closest gene), STBD1, and SCARB2, in this tissue.
Only long-range interactions stemming from SCARB2 were
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detected (Fig. 7d), which led us to prioritize this gene as the likely
effector of the association signal in this locus. SCARB2 encodes
for the lysosomal integral membrane protein type 2 (LIMP-2),
which has been reported to play a role in cholesterol transport in
lysosomes44.

Overlap of risk loci for ICP and other traits. All but one of the
loci identified in this study (rs34491636, ENPP7) have been
previously associated (at r2 > 0.6) with diseases or traits in the
GWAS Catalog45, many of which have phenotypic overlap with
ICP (Supplementary Fig. 8 and Supplementary Data 4). Notably,
six of the loci have previously been associated with gallstone
disease, six with LDL cholesterol concentrations, and four with
liver enzyme concentrations (Supplementary Fig. 8). Likewise, we
observed a strong enrichment for ICP susceptibility genes
(identified in an unbiased manner from the GWAS loci) being
also associated with gallstone disease (P= 2.5 × 10−15) and LDL
cholesterol (P= 2.67 × 10−07) (Supplementary Fig. 9).

The elevated serum bile acids that form the core phenotype are
also associated with maternal and fetal dyslipidemia46–48, and
increased rates of gallstone formation49. Variation at ABCG8 has
previously been linked to gallstone disease and other lipid-related
phenotypes50,51. However, the specific haplotype associated with
ICP differs from the main reported association with gallstone
disease. CYP7A1 variation is associated with blood lipid traits52 in
addition to gallstone formation53. Heterozygous ABCB4 muta-
tions were the first genetic link identified to ICP54,55 and
common variation at this locus has been previously described in
ICP10. In the context of pregnancy, raised gestational hormones
cause reduced FXR-mediated induction of hepatic Bsep, Shp, and
Mdr36, and enterocyte Shp and Fgf15/1956 thereby causing
abnormal bile acid homeostasis. This is likely to exacerbate
susceptibility to hypercholanemia in genetically predisposed
women with the variants reported in this manuscript.

Given the strong overlap between genes associated with ICP
and cholelithiasis (Supplementary Fig. 9), we directly examined
the evidence of association of the 11 ICP loci with cholelithiasis
using the FinnGen cholelithiasis GWAS (https://r4.finngen.fi/
pheno/K11_CHOLELITH), which includes 15,683 cases and
158,425 controls. Six of the loci identified in our ICP GWAS
meta-analysis achieve genome-wide significance for cholelithiasis
as well (P < 5 × 10−08) (Supplementary Fig. 8). Two additional
loci demonstrate nominal evidence of association. Despite 100%
power (assuming a similar-sized effect on the risk of ICP and
cholelithiasis) to detect association, three ICP loci (ABCB11,
SCARB2, and ENPP7) showed no evidence of association with
cholelithiasis indicating that they are specific to ICP and not
shared with cholelithiasis.

We also directly examined evidence of association at the 29 loci
with AF > 0.01 (the MAF threshold in our study) previously
associated with cholelithiasis in the largest meta-analysis published
to date (comprising 27,174 cholelithiasis cases and 736,838
controls57). Five of these loci achieve genome-wide significance
(P < 5 × 10−08) in the ICP meta-analysis (SERPINA1, CYP7A1,
GCKR, ABCB4, and HNF4A) and a further five show evidence of
association with ICP after correcting for examining 29 loci (P < 0.05/
29= 0.0017); two of these are genes reported as genome-wide
significant in the present ICP GWAS (ABCG8 and SULT2A1) and
three are not (FADS2, JMJD1C, and TTC39B). Assuming the same
effect size of these associations between cholelithiasis and ICP, the
power to detect association at P= 0.0017 was only present for one
locus (at which significance was achieved) so we examined whether
a composite effect of the known cholelithiasis genetic risk variants
was detectable in ICP patients by calculating polygenic risk scores
(PRS). Of the 29 cholelithiasis loci, genotype data were available in
the NIHR-RD dataset for 27. PRS calculated using the OR from the
previously published cholelithiasis GWAS demonstrated ICP
patients have a significantly higher burden of cholelithiasis genetic
risk variants compared with controls (Wilcoxon P= 1.4 × 10−05).
However, when this analysis was repeated with the above loci that
showed association in the ICP meta-analysis removed (leaving 18
variants for which data were available), there was no difference in
PRS (P= 0.198) between ICP and controls, despite 92% power to
detect a difference at P < 0.05. This suggests that not all the genetic
risk factors for cholelithiasis are risk factors for ICP. Together, these
findings indicate that cholelithiasis and ICP have distinct but
overlapping sets of genetic risk factors.

Given the overlapping genetic architecture between ICP and
gallstone disease, and the broad spectrum of disease severity in
this group, these loci represent possible modifier genes in a
number of other cholestatic diseases such as the progressive
familial cholestasis syndromes58.

In conclusion, this study has uncovered common variation that
influences ICP susceptibility, identifying key contributing genes.
These genes highlight an underlying shared mechanism of
variation at liver-specific genes and cis-regulatory elements,
providing insights into the pathogenesis of this disease that
warrant further investigation.

Methods
Study cohorts and ethics. An extensive description of the cohorts included in this
study and details of the ethics approvals can be found in the Supplementary Note
in Methods (Supplementary Information).

NIHR-RD and 100KGP whole-genome sequencing variant calling, quality
control, ancestry, and relatedness estimation. Detailed methods describing the
processing of whole-genome sequence data for the NIHR-RD and 100KGP cohorts

Fig. 5 GWAS meta-analysis of ICP reveals association signals affecting the bile acid homeostasis genes CYP7A1 and SULT2A1. a, d LocusZoom61 plots
showing the association signals at CYP7A1 and SULT2A1, respectively. The LocusZoom plots are as per Fig. 3 and association testing was performed as
described in Fig. 1. All epigenomic and transcriptomic datasets shown were retrieved from ENCODE18. Adult liver ATAC-seq peaks track (green regions)
corresponds to regions accessible in at least two out of four ENCODE adult liver ATAC-seq (see “Methods”). 95% PP ICP variants, variants within the 95%
genetic credible set in the ICP meta-analysis. LD ICP variants, variants with EUR r2 > 0.8 with the meta-analysis lead variant. PPfunc, functional posterior
probability calculated using PAINTOR. CADD, combined annotation-dependent depletion. a Functional fine-mapping with PAINTOR17 identified a single
variant (rs10504255) with a posterior probability over 0.99 overlapping an active liver enhancer located between the CYP7A1 gene, which encodes the
rate-limiting enzyme for bile acid synthesis, and UBXN2B. b, e GTEx34 [GTEx Analysis Release V8 (dbGaP Accession phs000424.v8.p2)] human liver
eQTLs identify the top prioritized variant in the CYP7A1 locus (rs10504255) as an eQTL associated with the eGene UBXN2B (b) and show that the SULT2A1
promoter ICP variant (rs296361) is an eQTL for both SULT2A1 and its downstream lncRNA LINC01595 (e). Violin plots represent the density distribution of
the samples in each genotype (n for each genotype is indicated below in blue). Box plots show normalized gene expression in median (white line), first and
third quartiles. Gene-level adjusted P values calculated with FastQTL85 are shown. c The risk allele of the ICP-associated variant rs10504255 (G) disrupts a
DMRTA1-binding motif. We note that this allele also associates with weaker transactivation in liver tissue, as observed by eQTL analysis (b). d Overlap of
ICP risk variants with adult liver accessible chromatin sites revealed one variant in the promoter of SULT2A1 (rs296361). f Transcription factor motif
analysis revealed that the ICP variant rs296361 affects a motif for the SOX-D transcriptional repressor family.
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can be found in the Supplementary Note in Methods (Supplementary
Information).

NIHR-RD and 100KGP genome-wide association analyses. For genome-wide
association analysis (GWAS) in both the NIHR-RD and 100KGP cohorts

separately, variants passing the following criteria were retained: MAF ≥ 0.01,
minimum minor allele count (MAC) ≥ 20, missingness <1%, Hardy–Weinberg
equilibrium P value >1 × 10−6 and differential (case/control) missingness P value
>1 × 10−5. The final NIHR-RD and 100KGP datasets comprised 8,337,027 and
9,545,879 variants, respectively. GWAS was performed in each dataset separately
using the R package SAIGE13 (versions 0.42.1 and 0.44.2) (https://github.com/
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weizhouUMICH/SAIGE). SAIGE implements a generalized logistic mixed model
to account for population stratification and a saddle-point approximation to
control type 1 error rates when case–control ratios are unbalanced. SAIGE was run
using the default parameters. Null logistic mixed models were fitted using the
subsets of linkage disequilibrium (LD)-free high-quality common SNVs. Sex and
the top ten principal components were used as fixed effects. The genomic inflation
factors (lambda), calculated based on the 50th percentile, were 1.009 and 1.001 in
NIHR-RD and 100KGP, respectively, indicating no evidence of confounding by
population structure. The summary statistics from the NIHR-RD were lifted over
from build GRCh37 to build GRCh38 of the human genome using CrossMap59

(version 0.5.2) (http://crossmap.sourceforge.net/). In all, 12,756 variants failed to
lift over. Due to data sharing restrictions, it was not possible to combine the raw
genome-wide genotype data from the NIHR-RD and 100KGP datasets.

NIHR-RD and 100KGP meta-analysis. Meta-analysis of the NIHR-RD and
100KGP GWAS summary statistics was performed using METAL (version 2011-
03-25) (https://genome.sph.umich.edu/wiki/METAL)14. Multi-allelic variants were
excluded such that there were 8,291,828 and 9,545,879 variants in NIHR-RD and
100KGP, respectively. Of these, 8,207,819 variants were shared and 8,201,630
variants had matching alleles. Meta-analysis was performed weighting the effect
size estimates using the inverse of the standard errors. Variants showing hetero-
geneity of effect between the two datasets (P < 1 × 10−5) and those in which the
minimum/maximum allele frequencies differed by >0.05 were excluded leaving
8,199,999 variants. A Manhattan plot was produced using the R package qqman
(version 0.1.8) (https://github.com/stephenturner/qqman)60 (Supplementary Fig-
ure 3a). Four loci achieved genome-wide significance (P < 5 × 10−8). A QQ plot
was generated using the observed and expected –log10 (P values) (Supplementary
Fig. 3c). The genomic inflation factor (lambda), calculated based on the 50th
percentile, was 1.01 indicating no significant population stratification.

FinnGen genome-wide association analysis. FinnGen is a public-private part-
nership combining digital health record data from Finnish health registries with
genotyping data from Finnish Biobanks. Release 4 (https://finngen.gitbook.io/
documentation/v/r4/) includes association data at 16,962,023 variants for 2444
endpoints in 176,899 Finnish individuals. A detailed description of the study design
and analytical methods are available in the online documentation (URL above). In
brief, individuals were genotyped with Illumina and Affymetrix chip arrays. QC
was performed to remove samples and variants of poor quality. Genome-wide
imputation was performed using reference Finnish whole-genome sequence data.
Disease endpoints were defined using nationwide registries based on ICD (and
other) codes. A subset of unrelated individuals of genetically confirmed Finnish
ancestry was identified. GWAS was performed using SAIGE (version 0.35.8.8) for
all variants with MAC > 5. Sex, age, 10 PCs, and genotyping batch were included as
covariates in the analysis.

For the ICP GWAS (https://r4.finngen.fi/pheno/O15_ICP), cases (n= 740)
were identified as those with the ICD-10 code of O26.6 (“Liver disorders in
pregnancy, childbirth and the puerperium” including “cholestasis (intrahepatic) in
pregnancy” and “obstetric cholestasis”) or an ICD-9 code of 646.7 (“Liver and
biliary tract disorders in pregnancy”). All females without these ICD codes were
included as controls (n= 99,621). Seven loci achieved genome-wide significance
(P < 5 × 10−8) (Supplementary Fig. 3b). The genomic inflation factor (lambda),
calculated based on the 50th percentile, was 1.046 (Supplementary Fig. 3d).

Combined UK (NIHR-RD and 100KGP) and FinnGen meta-analysis. A meta-
analysis was subsequently performed of the combined NIHR-RD and 100KGP data
(“UK meta-analysis”) and the FinnGen summary statistics. This included 154,780
individuals of whom 1138 were cases and 153,642 were controls. Meta-analysis was
performed using the same methodology as described above. A total of 7,721,597
variants were shared between the final UK meta-analysis dataset and the FinnGen

dataset and 7,715,997 variants had matching alleles. After performing the meta-
analysis, variants showing heterogeneity of effect between the two datasets
(P < 1 × 10−5) and those in which the minimum/maximum allele frequencies dif-
fered by >0.25 were excluded leaving 7,715,762 variants. Eleven loci achieved
genome-wide significance (P < 5 × 10−8) (Fig. 1). The genomic inflation factor
(lambda), calculated based on the 50th percentile, was 1.027 (Supplementary
Fig. 3e). Summary statistics for each of the lead variants in each of the separate
GWAS and meta-analyses are provided in Supplementary Data 1.

LocusZoom. Regional high-resolution association plots showing the LD between
markers in the prioritized loci (as per European reference data) were generated
using LocusZoom (version 0.13.3) (https://my.locuszoom.org/)61. Credible sets
were calculated by LocusZoom using Bayes factors based on the P values (https://
statgen.github.io/gwas-credible-sets/method/locuszoom-credible-sets.pdf).

Epistasis. Testing for epistatic interactions was performed across all possible 55
pairs of the 11 prioritized lead risk variants in NIHR-RD and 100KGP separately
with PLINK16 (version 1.9) (https://www.cog-genomics.org/plink/). The resulting P
values were combined using Fisher’s method. No significant interactions were
identified after correcting for multiple testing based on 55 comparisons
(P < 0.0009).

Conditional analysis. Each of the prioritized loci was examined using “conditional
and joint analyses” (GCTA-COJO)15 to assess whether there was more than one
independent signal. COJO was run from GCTA (version 1.93.2) (https://
cnsgenomics.com/software/gcta/#COJO) using default parameters (examining a
10-Mb window surrounding genome-wide significant variants). The NIHR-RD
dataset was utilized to provide the reference LD structure of the variants.

Power calculations. Post hoc power calculations were performed to assess the
range of odds ratio (OR) and allele frequencies for which associations could be
detected at genome-wide significance (P < 5 × 10−8) given the number of cases and
controls in the final meta-analysis. The R package genpwr62 (version 1.0.4) (https://
cran.r-project.org/web/packages/genpwr/index.html) was employed using a logistic
model under genetic additivity. Power to detect specific previously described
associations was calculated with genpwr using the OR of the described associations,
reference European AF and cohort sizes. For cholelithiasis, the OR were taken from
the supplementary data of a published meta-analysis57 (Supplementary Data 1).
For rs708686 the OR from the additive model described in the manuscript was
utilized.

Polygenic risk score calculation. A polygenic risk score (PRS) for cholelithiasis in
the NIHR-RD data was calculated using Mangrove (version 1.21) (https://cran.r-
project.org/web/packages/Mangrove/index.html)63 with the previously published
cholelithiasis OR57 and reference European AF, as described above. The PRS was
calculated assuming additivity within and between loci. Statistical comparison of
the PRS in cases and controls was performed using an unpaired two-sample two-
sided Wilcoxon rank-sum test.

Power calculations for the PRS analyses were performed through simulating
genotype data for case and control datasets using custom code, written in R
(available on request). Genotypes were simulated for each variant in each
individual with the probabilities of each genotype status (homozygous reference,
heterozygous, and homozygous alternate) determined by the Hardy–Weinberg
equilibrium formulae based on the AF and assuming complete linkage equilibrium
between the variants. For controls, the reference European AF were used. For cases,
the AF of the risk allele were calculated from the reference AF and OR. A total of
100 repetitions of the simulation process were performed in which genotypes for
the target variants were generated for the required number of cases and controls

Fig. 6 Analysis human liver eQTLs uncovers TMEM147 and ENPP7 as effector transcripts of ICP susceptibility. a, d LocusZoom86 plots showing the
association signals at TMEM147 and ENPP7, respectively. The LocusZoom plots are as per Fig. 3 and association testing was performed as described in
Fig. 1. All epigenomic and transcriptomic datasets shown were retrieved from ENCODE18. Adult liver ATAC-seq peaks track (green regions) corresponds to
regions accessible in at least two out of four ENCODE adult liver ATAC-seq (see “Methods”). 95% PP ICP variants, variants within the 95% genetic
credible set in the ICP meta-analysis. LD ICP variants, variants with EUR r2 > 0.8 with the meta-analysis lead variant. PPfunc, functional posterior probability
calculated using PAINTOR17. CADD, combined annotation-dependent depletion. Overlap of ICP-associated variants in these two loci with adult liver
accessible chromatin sites enabled the prioritization of two ICP regulatory variants in intronic regions of GAPDHS (rs4806173) (a) and ENPP7 (rs9916601)
(d). b, e The ICP variants prioritized with functional liver chromatin annotations are eQTLs in liver tissue and pinpoint TMEM147 and ENPP7 as effector
transcripts in these loci. Violin plots represent the density distribution of the samples in each genotype (n for each genotype is indicated below in blue). Box
plots show normalized gene expression in median (white line), first and third quartiles. Gene-level adjusted P values calculated with FastQTL86 are shown.
Liver eQTL plots were retrieved from GTEx34 [GTEx Analysis Release V8 (dbGaP Accession phs000424.v8.p2)]. We note that GAPDHS is a testis-specific
gene and its interrogation as an eGene for rs4806173 was therefore not possible (b). c The ICP risk allele of rs4806173 (G), which associates with less
transcription of TMEM147, is predicted to create a binding site for glucocorticoid receptors, a family of context-dependent transcriptional regulators that
can act as either activators or repressors87.
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Fig. 7 Tissue-specificity and 3D chromatin conformation analyses prioritize SCARB2 as an ICP susceptibility gene. a LocusZoom86 plot showing the
association signal at SHROOM3. The LocusZoom plots are as per Fig. 3 and association testing was performed as described in Fig. 1. All epigenomic and
transcriptomic datasets shown were retrieved from ENCODE18. Adult liver ATAC-seq peaks track (green regions) corresponds to regions accessible in at
least two out of four ENCODE adult liver ATAC-seq (see “Methods”). 95% PP ICP variants, variants within the 95% genetic credible set in the ICP meta-
analysis. LD ICP variants, variants with EUR r2 > 0.8 with the meta-analysis lead variant. CADD, combined annotation-dependent depletion. Overlap of ICP
risk variants in this locus with adult liver accessible chromatin sites enabled the prioritization of a single ICP-regulatory variant in an intronic region of the
SHROOM3 gene (rs4859682). None of the other ICP variants (EUR r2 > 0.8 with lead variant or in the 95% PP credible set) overlapped accessible
chromatin sites. b Expression of all genes within the TAD containing the ICP lead variant rs13146355 in the human liver. Expression data was retrieved from
GTEx34 [GTEx Analysis Release V8 (dbGaP Accession phs000424.v8.p2)]. Violin plots represent the density distribution of expression of the indicated
genes in human liver tissue (n= 226 donors). Box plots show gene expression in median (white line), first and third quartiles. TPM, transcripts per million.
Note that the gene harboring the ICP risk variant, SHROOM3, is lowly expressed in the liver. c Scatter plot showing the expression of all genes within the
TAD containing the ICP lead variant rs13146355 in the human liver versus their liver-specificity. Tissue-specificity scores (SPECS) were precalculated by
Everaert et al.81. Source data are provided as a Source Data file. This plot highlights two highly expressed and liver-specific genes, STBD1, and SCARB2.
d, Analysis of long-range chromatin interactions in human liver detected by promoter capture Hi-C79, showing that the genomic region containing the ICP
risk variant rs4859682 interacts with SCARB2, but not SHROOM3. Long-range chromatin interactions stemming from the promoter of STBD1 were not
detected in liver tissue.
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(matching the numbers available in the ICP analysis). For each repetition, PRS
were generated for each individual using Mangrove, and the statistical significance
of the difference between cases and controls was calculated using Wilcoxon rank-
sum test. The power to detect a difference was then determined as the percentage of
simulations in which a statistically significant difference between cases and controls
was seen at P < 0.05.

Unbiased gene prioritization and expression/pathway/GWAS Catalog ana-
lyses. An unbiased assessment of gene expression and functional pathway
enrichment of the genes within the 11 prioritized risk loci was undertaken as
follows. All 655 variants achieving P < 5 × 10−8 in the final meta-analysis were
identified. Of these, 629 were successfully mapped to an rsID. All variants in LD
with these variants at r2 > 0.8 in European individuals using 1000 Genomes data
were identified using LDlinkR (version 1.1.2) (https://cran.r-project.org/web/
packages/LDlinkR/vignettes/LDlinkR.html)64. This resulted in the identification of
871 unique variants. These variants were subsequently analyzed using the Ensembl
Variant Effect Predictor (VEP)65 (version 104) (https://www.ensembl.org/info/
docs/tools/vep/index.html) to identify the 39 unique genes impacted. These genes
were interrogated using the GENE2FUNC tool in FUMA (version 1.3.6b) (https://
fuma.ctglab.nl/gene2func)66. 35 genes were successfully mapped and analyzed by
GENE2FUNC (ABCB1, ABCB11, ABCB4, ABCG5, ABCG8, ATP4A, BABAM2,
C2orf16, CCDC121, CRX, CYP7A1, DHRS9, EIF2B4, ENPP7, GAPDHS, GCKR,
GPN1, HNF4A, LINC01595, MRPL33, NSMAF, PPIAP85, PPP4R4, RBKS, SBSN,
SDCBP, SERPINA1, SERPINA10, SERPINA2, SERPINA6, SHROOM3, SNX17,
SULT2A1, TMEM147, TMEM147-AS1, TPRX2P, UBXN2B, ZNF512, and ZNF513).
The results of tissue-specificity analysis (as per GTEx34 data (https://www.
gtexportal.org)), gene sets/pathway analysis (as per MsigDB67 (https://www.gsea-
msigdb.org/gsea/msigdb)) and overlap of the genes with GWAS Catalog45 reported
associations (https://www.ebi.ac.uk/gwas/) were interrogated. Further details
regarding the methodology employed by GENE2FUNC are available on the FUMA
website (https://fuma.ctglab.nl/tutorial#g2fOutputs). Statistical significance was
assessed using hypergeometric tests with Bonferroni correction for multiple testing.

Overlap with previous GWAS findings. Previously described GWAS findings (as
per the GWAS Catalog (https://www.ebi.ac.uk/gwas)45 accessed on July 23, 2021)
were searched for overlap with the lead variants at each of the 11 genome-wide
significant ICP loci. This was undertaken using the LDtrait Tool from LDlink
(https://ldlink.nci.nih.gov/?tab=ldtrait)68. All associations achieving P < 5 × 10−6

that were in LD with the 11 identified lead variants at r2 > 0.6 in European
populations (using 1000 Genomes data) were included. Phenotype labels were
manually amended such that they were consistent and duplicates were removed
(Supplementary Fig. 8).

Identification of adult human liver replicated accessible regions. In order to
functionally annotate ICP risk variants, we retrieved from the ENCODE portal18

(https://www.encodeproject.org/) the IDR ranked peaks for a set of high-quality
ATAC-seq experiments carried out on four adult human liver samples. The file
identifiers were ENCFF948WBQ, ENCFF012SCX, ENCFF658LHI, and
ENCFF658LHI, and corresponded to liver samples from two males and two
females with ages ranging from 40 to 61 years old (mean 47 years old). Using these
files, we identified the set of genomic regions that were accessible in at least two of
the four donors, which we used to prioritize and identify functional ICP regulatory
variants. These regions are provided in Supplementary Data 5 (coordinates from
genome assembly GRCh38/hg38).

Variant functional prioritization. The overall prioritization strategy to identify the
most likely risk causal variants and genes at each of the ICP-associated loci is
presented in Fig. 2. Details of each of the steps taken to prioritize causal variants
and genes are described in the next sections.

Statistical fine-mapping. We applied PAINTOR (version 3.1) (https://bogdan.
dgsom.ucla.edu/pages/paintor/)17 (a Bayesian fine-mapping approach) which uses
an empirical Bayes prior to integrate functional annotation data, LD patterns and
strength of association to estimate the posterior probability (PP) of a variant being
causal. Variants within a 100-kb window centering on the lead variant at each of
the 11 genome-wide significant loci in the meta-analysis were included. LD
matrices of pairwise correlation coefficients were derived using European 1000
Genomes (Phase 3) imputed data69, excluding variants with ambiguous alleles (A/T
or G/C) where reference/alternate alleles could not be reliably matched. Each
variant was intersected with the following functional annotations to generate a PP
of being causal (PPfunc): PhastCons elements (phastConsElements100way, updated
August 5, 2015), ENCODE18 ATAC-seq replicated peaks generated from the adult
liver (see above), and Roadmap E066 (adult liver) ChIP-seq narrow peaks for
H3K27ac and H3K4me1 histone modifications. Variants with PPfunc > 0.8 were
prioritized for further investigation.

For the loci in which PAINTOR did not identify at least one variant with a high
posterior probability of being causal (PPfunc > 0.8), we then proceeded to intersect
the coordinates of all ICP variants in the locus with human adult liver accessible
chromatin sites (see details above) using pybedtools version 0.8.070 (https://daler.

github.io/pybedtools/). This approach was taken because none of the remaining
loci contained coding variants. To carry out this analysis, we first defined ICP
variants as either (a) all variants within the 95% credible set defined in the ICP
GWAS meta-analysis by LocusZoom, or (b) all variants in high LD (r2 > 0.8) with
the meta-analysis lead variant in European (EUR) individuals. High LD variants
were identified using LDlink (https://ldlink.nci.nih.gov/?tab=ldproxy).

Variant functional annotation of coding variants. ICP risk variants were first
annotated in relation to their potential to disrupt protein-coding sequences. We
identified four ICP-associated loci in which there was at least one coding non-
synonymous risk variant. To investigate their potential pathogenicity, we first
interrogated them in ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/)71. For the
ICP coding variants not reported as pathogenic in ClinVar, we performed further
pathogenicity analysis using MetaDome23 (version 1.0.1), which is based on the
concept of protein domain homology in the human genome. Briefly, homologous
Pfam protein domains were aggregated into meta-domains. Then, population
variation from the Exome Aggregation Consortium (ExAC) (https://exac.
broadinstitute.org/) and pathogenic mutations from the Human Gene Mutation
Database (HGMD)72 (http://www.hgmd.cf.ac.uk/ac/index.php) were used to create
genetic tolerance profiles across human meta-domains at amino acid resolution.
MetaDome genetic tolerance profiles were previously derived using 56,319 tran-
scripts, 71,419 protein domains, 12,164,292 genetic variants from gnomAD73, and
34,076 pathogenic mutations from ClinVar71 and queried via the online portal at
https://stuart.radboudumc.nl/metadome. Interrogation of the coding variant in the
GCKR gene was not possible due to a lack of data availability. Finally, we retrieved
the CADD scores of pathogenicity (release version 1.6, GRCh38/hg38) for all
coding variants from https://cadd.gs.washington.edu/download. The pathogenicity
analysis results are presented in Supplementary Data 3.

Analysis of the survey of regulatory elements data. Survey of Regulatory Elements
was previously performed in HepG2 cells31. In that study, the authors interrogated
5.9 million human biallelic SNPs for their ability to confer allele-dependent reg-
ulatory activity. We retrieved this dataset (SuRE_SNP_table_LP190708.txt.gz) from
https://osf.io/pjxm4/ and queried all ICP variants (see details above) at each of the
11 ICP risk loci. Data are presented as non-risk versus risk allele. P values were
obtained by a two-sided Wilcoxon rank-sum test, comparing for each SNP the set
of SuRE values of all fragments containing the reference allele versus the set of
SuRE values of all fragments containing the alternative allele. Following the original
report31, P < 0.00173121 were considered as passing a 5% false-discovery rate
threshold. Data mining was performed using Python (version 3.7) and figures were
plotted using seaborn74 version 0.11.2 (https://seaborn.pydata.org/).

Transcription factor binding motif analysis. The prioritized ICP-associated variants
(see details above) were investigated for their potential effect on TF binding affinity
using Motifbreak R version 2.2.0 (https://bioconductor.org/packages/release/bioc/
html/motifbreakR.html). To query motifs, we imported MotifDb (https://
bioconductor.org/packages/release/bioc/html/MotifDb.html) (version 1.30.0),
which contains >4200 TF motifs, including >2800 motifs from studies in human
samples and includes the databases HOCOMOCO75, HOMER76, and ENCODE-
motifs18. For visual representation, motif logos were downloaded from JASPAR
202077 (http://jaspar.genereg.net/).

Analysis of human liver eQTLs. Human liver eQTL data shown in this study were
retrieved from the Genotype-Tissue Expression (GTEx) Portal34 on May 12, 2021,
which at the time of accession contained data for 208 liver samples. [GTEx Analysis
Release version 8 (dbGaP Accession phs000424.v8.p2)]. At each ICP association
signal, we queried the lead variant and, if different, the variant that was functionally
prioritized. The analysis was restricted to liver eQTLs and eGenes contained in the
same TAD as the lead variant (human liver TAD coordinates were retrieved from
http://3dgenome.fsm.northwestern.edu/publications.html). Figures were directly
downloaded from the GTEx Portal.

Analysis of adult liver 3D chromatin conformation. Gene expression and eQTL
analyses were restricted to the topologically associating domains (TADs) con-
taining the ICP-associated variants identified in our meta-analysis. Human liver
TAD coordinates (GRCh38/hg38)78 were retrieved from http://3dgenome.fsm.
northwestern.edu/downloads/hg38.TADs.zip.

For specific investigation of long-range chromatin interactions in liver tissue, we
interrogated two complementary datasets from adult liver: Hi-C78 and capture Hi-
C79. These datasets were visualized and analyzed using the 3D-genome interaction
viewer and database (http://www.3div.kr/).

Visualization of human adult liver datasets. Human adult female liver (right
lobe) epigenomic and transcriptomic datasets we downloaded from the ENCODE
portal18 (https://www.encodeproject.org/) in bigwig format and visualized using
the UCSC Genome Browser80 (GRCh38/hg38). All data corresponds to fold change
over control for the shown assay. The visualized files had the following identifiers:
ENCFF232QBB (ATAC-seq), ENCFF280QYJ (H3K4me3 ChIP-seq) and
ENCFF853WPX (H3K27ac ChIP-seq). Adult liver 3D chromatin interaction
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datasets were visualized and analyzed using the 3D-genome interaction viewer and
database (http://www.3div.kr/).

Tissue-specificity analysis. In order to investigate whether the ICP risk variants
at SHROOM3 could be in the vicinity of or interact with liver-specific genes, we
used SPECS scores81, which were pre-computed for adult liver for all Ensembl
(GRCh38.v85) genes using all GTEx34 samples. In brief, SPECS is a non-parametric
tissue-specificity score that is compatible with unequal sample group sizes. SPECS
uses all individual data points available and enables the detection of features that
are specifically present or absent in one or more tissue types. The SPECS score has
been shown to outperform other tissue-specificity scores81, including z-score82 and
JSD83. Data mining was performed using Python (v3.7) and figures were plotted
using seaborn74 version 0.11.2 (https://seaborn.pydata.org/)18.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The genome-wide summary statistics for the final combined meta-analysis carried out in
this study have been deposited in the GWAS Catalog under accession code GCP000309,
available at https://www.ebi.ac.uk/gwas/studies/GCST90095084. The lead variants’
GWAS and GWAS meta-analysis summary statistics generated in this study are provided
in Supplementary Data 1. Genotype and phenotype data from the NIHR-RD participants
are available from several sources. 4,835 of the NIHR-RD participants were part of the
100,000 Genomes Project—Rare Diseases Pilot. These data can be accessed by
application to Genomics England Limited following the procedure outlined at https://
www.genomicsengland.co.uk/about-gecip/joining-researchcommunity/. The genotype
and phenotype data from the remaining 7348 NIHR-RD participants can be accessed by
application to the NIHR BioResource Data Access Committee at
dac@bioresource.nihr.ac.uk. Subject to ethical consent, the genotype data of a subset of
6,939 NIHR-RD participants are also available from the European Genome-phenome
Archive (EGA) at the EMBL European Bioinformatics Institute [https://ega-archive.org/
dacs/EGAC00001000259]. This includes data from 305 ICP cases [https://ega-archive.
org/datasets/EGAD00001004515]. Genomic and phenotype data from the 100KGP
participants can be accessed by application to Genomics England Limited following the
procedure outlined at https://www.genomicsengland.co.uk/about-gecip/joining-
researchcommunity/. Genotype data for the 764 UK Biobank samples are available
through the UK Biobank [https://www.ukbiobank.ac.uk/]. The FinnGenn GWAS
summary statistics are publicly accessible following registration [https://www.finngen.fi/
en/access_results]. The adult human liver replicated accessible regions generated in this
study are provided in Supplementary Data 5. The variant pathogenicity data used in this
study are available in the ClinVar database [https://www.ncbi.nlm.nih.gov/clinvar/] and
through MetaDome v1.0.1 [https://stuart.radboudumc.nl/metadome]. The CADD scores
(v1.6) used in this study are available on the CADD website [https://cadd.gs.washington.
edu/download]. The liver epigenomic and transcriptomic data used in this study are
available in the ENCODE portal18 [https://www.encodeproject.org/]. The SuRE data31

used in this study are available in the OFS data repository [https://osf.io/pjxm4/]. The
transcription factor motif logos used in this study are available in the JASPAR database
[http://jaspar.genereg.net/]. The eQTL data used in this study are available in the
Genotype-Tissue Expression (GTEx) Portal34 under dbGaP accession phs000424.v8.p2
[https://gtexportal.org/home/]. The tissue-specificity SPECS81 scores for liver tissue used
in this study are available in the SPECS web browser [https://specs.cmgg.be]. The adult
liver TAD coordinates used in this study are available in the 3D Genome Browser [http://
3dgenome.fsm.northwestern.edu/index.html].

Code availability
Custom code used in this study is available upon request.
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