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CONTRIBUTION

What are the novel findings of this work?
Non-linear machine-learning classifiers can be used
in combination with maternal risk factors and non-
normalized first-trimester biomarkers to predict preterm
pre-eclampsia (PE) with high accuracy. The incidence
of PE and maternal first-trimester characteristics are
race-dependent, and excluding the race information from
the model significantly reduces the prediction accuracy
in general and especially in non-white populations when
only maternal factors are considered. We find that the
values of mean arterial blood pressure, uterine artery
pulsatility index and placental growth factor are crucial to
reach accurate prediction, whereas pregnancy-associated
plasma protein-A has a limited contribution.

What are the clinical implications of this work?
This work allows the prediction of PE using raw
biomarker data without the need to convert them into
multiples of the median, which is currently the standard
approach to PE screening. This should facilitate wider
implementation of first-trimester preterm PE prediction.

ABSTRACT

Objective To evaluate the accuracy of predicting the
risk of developing pre-eclampsia (PE) according to
first-trimester maternal demographic characteristics, med-
ical history and biomarkers using artificial-intelligence
and machine-learning methods.

Methods The data were derived from prospective
non-interventional screening for PE at 11–13 weeks’
gestation at two maternity hospitals in the UK. The
data were divided into three subsets. The first set,
including 30 437 subjects, was used to develop the training
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process, the second set of 10 000 subjects was utilized
to optimize the machine-learning hyperparameters and
the third set of 20 352 subjects was coded and used
for model validation. An artificial neural network was
used to predict from the demographic characteristics and
medical history the prior risk that was then combined
with biomarker values to determine the risk of PE and
preterm PE with delivery at < 37 weeks’ gestation. An
additional network was trained without including race
as input. Biomarkers included uterine artery pulsatility
index (UtA-PI), mean arterial blood pressure (MAP),
placental growth factor (PlGF) and pregnancy-associated
plasma protein-A. All markers were entered using raw
values without conversion into standardized multiples of
the median. The prediction accuracy was estimated using
the area under the receiver-operating-characteristics curve
(AUC). We further computed the detection rate at 10%,
20% and 40% false-positive rates (FPR). The impact
of taking aspirin was also added. Shapley values were
calculated to evaluate the contribution of each parameter
to the prediction of risk. We used a non-parametric test
to compare the expected AUC with the one obtained
when we randomly scrambled the labels and kept the
predictions. For the general prediction, we performed
10 000 permutations of the labels. When the AUC was
higher than the one obtained in all 10 000 permutations,
we reported a P-value of < 0.0001. For the race-specific
analysis, we performed 1000 permutations. When the
AUC was higher than the AUC in permutations, we
reported a P-value of < 0.001.

Results The detection rate for preterm PE vs no PE, at
a 10% FPR, was 53.3% when screening by maternal
factors only, and the corresponding AUC was 0.816;
these increased to 75.3% and 0.909, respectively, with
the addition of biomarkers into the model. Information
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on race was important for the prediction accuracy; when
race was not used to train the model, at a 10% FPR,
the detection rate of preterm PE vs no PE decreased
to 34.5–45.5% (for different races) when screening
by maternal factors only and to 55.0–62.1% when
biomarkers were added. The major predictors of PE were
high MAP and UtA-PI, and low PlGF. The accuracy of
prediction of all PE cases was lower than that for preterm
PE. Aspirin use was recommended for cases who were at
high risk of preterm PE. The AUC of all PE vs no PE
was 0.770 when screening by maternal factors and 0.817
when the biomarkers were added; the respective detection
rates, at a 10% FPR, were 41.3% and 52.9%.

Conclusions Screening for PE using a non-linear
machine-learning-based approach does not require a
population-based normalization, and its performance is
similar to that of logistic regression. Removing race infor-
mation from the model reduces its prediction accuracy,
especially for the non-white populations when only mater-
nal factors are considered. © 2022 International Society
of Ultrasound in Obstetrics and Gynecology.

INTRODUCTION

Pre-eclampsia (PE) is a major cause of maternal and
fetal morbidity and mortality1,2. First-trimester screening
for PE by a combination of maternal characteristics
and medical history with the measurements of mean
arterial pressure (MAP), uterine artery pulsatility index
(UtA-PI), serum placental growth factor (PlGF) and serum
pregnancy-associated plasma protein-A (PAPP-A) can
predict about 75% of preterm PE cases with delivery
at < 37 weeks’ gestation and 40–45% of term PE cases,
at a 10% false-positive rate (FPR)3–5. Treatment of the
high-risk group with aspirin (150 mg/day) from 12 to
36 weeks’ gestation reduces the rate of preterm PE by
approximately 60%6.

The competing-risks approach, which is a method
of screening for PE developed by the Fetal Medicine
Foundation, assumes that every woman has a personalized
distribution of gestational age at delivery with PE;
whether a woman experiences PE or not before a
specified gestational age depends on competition between
delivery before or after the development of PE5. The
distribution of biomarkers is specified based on gestational
age at delivery with PE. The values of UtA-PI, MAP,
PlGF and PAPP-A are expressed as multiples of the
median (MoM) after adjustment for gestational age and
various maternal factors that have been found to have a
substantial effect on the log10 transformed values of the
biomarkers7–10. However, MoM-based methods require
detailed information on the distribution of measures in a
sufficiently large cohort to allow prediction, which is often
lacking in many populations. In addition, when applied
to biochemical markers, the conversion to MoM has to be
updated repeatedly for each new dataset in order to adjust
it to different batches, manufacturers and analyzers.

Recently, artificial-intelligence, machine-learning and
deep-learning methods have attracted strong interest

around the world. These methods have already been tested
in the diagnosis and prediction of many prenatal com-
plications, such as Down syndrome, various structural
anomalies identified by ultrasound and autism spectrum
disorders11–14. In these studies, learning from dataset pat-
terns enabled artificial-intelligence and machine-learning
methods to identify interactions between variables and
outcomes that are not accessible by linear methods14,15.

The objective of this study was to examine the potential
value of neural networks for the prediction of PE by a
combination of maternal factors and biomarkers obtained
at 11–13 weeks’ gestation without converting raw data
into MoMs.

METHODS

Study population

The data were derived from prospective screening for
adverse obstetric outcome in women attending for their
routine first-trimester hospital visit at King’s College
Hospital, London, and Medway Maritime Hospital,
Gillingham, UK, between March 2006 and March 2017.
This visit was held at 11 + 0 to 13 + 6 weeks’ gestation
and included, first, recording of maternal characteristics
and medical history3; second, transabdominal ultrasound
for measurement of left and right UtA-PI using color
Doppler and calculation of the mean UtA-PI16; third,
measurement of MAP by a validated automated device
according to a standardized protocol17; and fourth, mea-
surement of serum concentration of PlGF and PAPP-A
using the DELFIA Xpress system (PerkinElmer Life and
Analytical Sciences, Waltham, MA, USA) or Cobas e411
system (Roche Diagnostics, Penzberg, Germany). MAP,
UtA-PI, PlGF and PAPP-A were measured on the day of
the visit. The women gave written informed consent to
participate in the study, which was approved by the NHS
research ethics committee.

The inclusion criteria for this study were a singleton
pregnancy undergoing first-trimester combined screening
for aneuploidy and subsequently delivering a pheno-
typically normal live birth or stillbirth at ≥ 24 weeks’
gestation. Pregnancies with aneuploidy or major fetal
abnormality and those resulting in termination, miscar-
riage, or fetal death before 24 weeks were excluded.

Outcome measures were preterm PE with delivery
at < 37 weeks’ gestation and term PE with delivery at
≥ 37 weeks. Data on pregnancy outcomes were collected
from the hospital maternity records or the general medical
practitioners of the women. The obstetric records of all
women with pre-existing or pregnancy-associated hyper-
tension were examined to determine if the condition was
PE, as defined by the American College of Obstetricians
and Gynecologists2. According to this definition, diagno-
sis of PE requires the presence of new-onset hypertension
(systolic blood pressure ≥ 140 mmHg or diastolic blood
pressure ≥ 90 mmHg) at ≥ 20 weeks’ gestation or chronic
hypertension and either proteinuria (≥ 300 mg/24 h or
protein-to-creatinine ratio ≥ 30 mg/mmol or ≥ 2+ on

© 2022 International Society of Ultrasound in Obstetrics and Gynecology. Ultrasound Obstet Gynecol 2022; 60: 739–745.
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Machine-learning prediction of pre-eclampsia 741

dipstick testing) or evidence of renal dysfunction (serum
creatinine > 97 μmol/L), hepatic dysfunction (transam-
inases ≥ 65 IU/L) or hematological dysfunction (platelet
count < 100 000/μL).

Machine learning

The input data were converted into Z-scores. Categorical
parameters were represented using one-hot encoding
and were not normalized. For the prediction, we used a
feed-forward neural network with two hidden layers. The
activation function, which is commonly used in neural net-
works, was a rectified linear unit; this is defined as y = max
(0, x). Dropout was applied to the second layer. An
Adam optimizer algorithm was used18. The loss function
was binary cross-entropy with logits (weighted). Machine
learning was performed using PyTorch19. Grid search
was implemented via NNI (https://github.com/microsoft/
nni), an automatic tool for hyperparameter tuning, which
optimizes machine-learning performance. The following
hyperparameters were tuned: batch size, learning rate,
dropout rate, size (number of neurons) of each hidden
layer, activation function and weight decay. The tuning
was done separately for the prior and posterior risk-based
predictions (the prior model was based on maternal
factors only, while the posterior model also used biomark-
ers). The dataset was split into a training set prepared
from the data of 30 437 subjects, an internal validation set
of 10 000 subjects and a test set of 20 352 subjects. The
tuning was done on the internal validation set, and the
results were reported based on the test set, which was not
available at the time of tuning. While the data on the out-
come of the training set were disclosed, for the test dataset,
the outcome data were coded and unknown to the team
in Israel that conducted the machine-learning analysis.
The tuning was performed on the internal validation set,
using the area under the receiver-operating-characteristics
curve (AUC), a combined measure of sensitivity and
specificity.

Experimental setup

Multiple tests were performed, and in all tests, the
same training/validation and test division were used. The
prediction was performed either including or excluding
the race input. When the race input was ignored, the
training was performed on the entire dataset, but the test
was performed separately for each race group.

In all cases, the following combinations were tested
independently: (a) PE vs no PE, (b) preterm PE vs no PE
and (c) preterm PE vs no PE plus term PE (everything
else). When preterm PE was compared with no PE,
term PE cases were ignored in both the training and the
test sets.

Shapley values

Data Shapley values20 reached fairness by considering
all subsets of subjects in the training set and calculating

a weighted sum of the individual contributions. The
computational effort for the exact calculation of Data
Shapley values grows exponentially with the number
of subjects (n) because a set of n-elements contains
2n − 1 non-empty subsets. However, there are effective
possibilities to estimate Data Shapley values. In this
work, Truncated Monte Carlo Shapley was used21. The
Truncated Monte Carlo algorithm starts with a random
permutation of the training set. First, the performance of
a random model was calculated. In this work, the AUC
for the predefined validation dataset was used as the
performance score. Afterward, the randomly permuted
subjects were added successively to the training dataset,
and machine-learning models were trained. The contribu-
tion of each added subject was calculated by subtracting
the previously achieved validation performance from the
validation performance of the new model. This procedure
was repeated until the addition of a new subject achieved
only marginal improvement. Afterward, the procedure
was repeated with a new permutation. One contribution
is thus calculated for each permutation and each
subject.

Statistical analysis

Two methods were used for evaluation. The prediction
accuracy was estimated using the AUC. The detection
rate (the recall) was also computed as a function of the
proportion of women who screened positive for PE. Since
the total proportion of PE cases in the population was
low, our goal was to minimize the proportion of women
who screened positive for PE but maximize the recall.
The P-values reported are the probability that the results
are random. A non-parametric permutation test was used
to compare the observed AUC with the one obtained
when we randomly scrambled the labels of each sample
but kept its predicted score. For the general prediction,
10 000 permutations of the labels were performed. When
the AUC was higher than the AUC obtained in all
10 000 permutations, a P-value of < 0.0001 was reported.
For the race-specific analysis, 1000 permutations were
performed. When the AUC was higher than the AUC
obtained in permutations, a P-value of < 0.001 was
reported.

RESULTS

Characteristics of study population

The study population of 60 789 pregnancies included
1722 (2.8%) subjects that developed PE. The character-
istics of the study population are summarized in Table 1.
In the PE group, compared with the non-PE group, there
were higher body mass index, interpregnancy interval,
proportion of black women and rates of chronic hyper-
tension, diabetes mellitus, systemic lupus erythematosus
or antiphospholipid syndrome, family and personal his-
tory of PE and conception via assisted fertility techniques,
and lower incidence of smoking.

© 2022 International Society of Ultrasound in Obstetrics and Gynecology. Ultrasound Obstet Gynecol 2022; 60: 739–745.
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Table 1 Characteristics of study population according to
pre-eclampsia (PE) status

Non-PE PE
Characteristic (n = 59 067) (n = 1722) P

Maternal age (y) 31.0
(26.6–34.8)

31.2
(26.7–35.2)

0.112

Maternal weight (kg) 67.0
(59.2–78.0)

74.0
(63.9–87.2)

< 0.0001

Maternal height (cm) 165
(160–169)

164
(159–168)

< 0.0001

GA at screening (days) 89.2
(85.1–93.3)

89.0
(85.0–93.0)

0.024

Race < 0.0001
White 43 963 (74.3) 993 (57.2)
Black 9790 (16.6) 599 (34.5)
South Asian 2641 (4.5) 83 (4.8)
East Asian 1230 (2.1) 24 (1.4)
Mixed 1515 (2.6) 37 (2.1)

Medical history
Chronic hypertension 630 (1.1) 215 (12.4) < 0.0001
DM Type I 228 (0.4) 12 (0.7) < 0.0001
DM Type II 294 (0.5) 26 (1.5) < 0.0001
SLE/APS 113 (0.2) 9 (0.5) 0.006

Smoker 5667 (9.6) 101 (5.8) < 0.0001
Family history of PE 2257 (3.8) 136 (7.8) < 0.0001
Method of conception < 0.0001

Spontaneous 57 258 (96.8) 1644 (94.7)
In-vitro fertilization 1408 (2.4) 72 (4.1)
Use of ovulation drugs 473 (0.8) 20 (1.2)

Parity < 0.0001
Nulliparous 27 303 (46.2) 1008 (58.1)
Parous, no previous PE 30 179 (51.0) 494 (28.5)
Parous, previous PE 1657 (2.8) 234 (13.5)

Interpregnancy interval (y) 3.0 (2.0–4.9) 3.9 (2.3–6.7) < 0.0001
Aspirin 1111 (1.9) 98 (5.6) < 0.0001
Biomarker

MAP (mmHg) 86.3
(81.1–91.8)

93.8
(87.8–99.8)

< 0.0001

UtA-PI 1.7 (1.3–2.0) 1.9 (1.5–2.4) < 0.0001
PlGF (pg/mL) 35.3

(25.9–49.6)
28.1

(20.4–40.7)
< 0.0001

PAPP-A (IU/L) 2.7 (1.7–4.2) 2.3 (1.4–3.8) < 0.0001

Data are given as median (interquartile range) or n (%). APS, anti-
phospholipid syndrome; DM, diabetes mellitus; GA, gestational age;
MAP, mean arterial pressure; PAPP-A, pregnancy-associated plasma
protein-A; PlGF, placental growth factor; SLE, systemic lupus
erythematosus; UtA-PI, uterine artery pulsatility index; y, years.

Table 2 Performance of screening for pre-eclampsia (PE) on test set

Detection rate (%) at:

Screening method AUC P 10% FPR 20% FPR 40% FPR

All PE vs no PE (n = 60 789)
MF 0.770 (0.747–0.793) < 0.0001 41.3 (35.2–47.4) 58.7 (53.6–63.8) 76.6 (72.5–80.7)
MF, PAPP-A, PlGF, MAP, UtA-PI 0.817 (0.797–0.837) < 0.0001 52.9 (48.2–57.6) 66.1 (61.2–71.0) 822 (79.9–84.5)

Preterm PE vs no PE (n = 59 551)
MF 0.816 (0.769–0.863) < 0.0001 53.3 (44.3–62.3) 67.1 (59.1–75.1) 81.5 (70.6–92.4)
MF, PAPP-A, PlGF, MAP, UtA-PI 0.909 (0.895–0.923) < 0.0001 75.3 (68.9–81.7) 87.8 (83.6–92.0) 93.4 (89.5–97.3)

Preterm PE vs everything else (n = 60 789)
MF 0.808 (0.759–0.857) < 0.0001 47.3 (40.1–54.5) 64.2 (53.3–75.1) 79.5 (67.6–91.4)
MF, PAPP-A, PlGF, MAP, UtA-PI 0.904 (0.890–0.918) < 0.0001 75.2 (68.7–81.7) 86.7 (81.2–92.2) 92.2 (86.7–97.7)

P-values reported are probability that results are random and were calculated by 10 000 random permutations. P-value < 0.0001 means that
the reported area under the receiver-operating-characteristics curve (AUC) is higher than the AUC in permutations. FPR, false-positive rate;
MAP, mean arterial pressure; MF, maternal factors; PAPP-A, pregnancy-associated plasma protein-A; PlGF, placental growth factor;
UtA-PI, uterine artery pulsatility index.

Performance of screening for pre-eclampsia

The data were separated into training, internal validation
and external test sets (Figure 1). The training set was
the input of an artificial neural network to predict three
independent tasks: PE vs no PE, preterm PE vs no PE
(term PE cases omitted) and preterm PE vs everything else
(no PE plus term PE). The internal validation set was used
for tuning hyperparameters to maximize the AUC of the
internal validation. The trained model was then applied
to the test set, and the results are reported below.

The detection rates, at FPR of 10%, 20% and 40%,
on the test set are given in Table 2, and the ROCs are
presented in Figure 2. This prediction was performed
separately based on the prior-risk data (demographic
characteristics and medical and pregnancy history data)
and posterior-risk data (all the characteristics plus
biomarkers PAPP-A, PlGF, MAP and UtA-PI). The
accuracy increased consistently with the addition of
biomarkers. Yet, even without using the biomarkers,
the artificial neural network successfully predicted PE.
Specifically, the AUC for preterm PE vs everything else
increased from 0.808 to 0.904 when posterior information
was added, and the detection rate, at a 10% FPR,

Total population (n= 60 789)

Training set
(n= 30 437)

Internal
validation set
(n= 10 000) 

External test set
(n= 20 352) 

Training

Hyperparameter
tuning 

Trained model

Figure 1 Flowchart showing division of data, from 60 789
pregnancies which underwent first-trimester screening for
pre-eclampsia, into training, validation and test sets. The training
dataset was used for the training process of the algorithm, and the
validation dataset was used to check the algorithm’s performance.
Different combinations of hyperparameters were checked in this
process, and the parameters that optimized the performance on the
validation set were used in the final model. The trained model was
then applied to the test set.

© 2022 International Society of Ultrasound in Obstetrics and Gynecology. Ultrasound Obstet Gynecol 2022; 60: 739–745.
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Figure 2 Receiver-operating-characteristics (ROC) curves
demonstrating performance of screening based on posterior-risk
data (biomarkers and maternal factors; ) or prior-risk data
(maternal factors only; ) in predicting: (a) pre-eclampsia (PE) vs
no PE (area under the ROC curve (AUC), 0.817 (posterior risk)
and 0.770 (prior risk)), (b) preterm PE vs no PE (AUC, 0.909
(posterior risk) and 0.816 (prior risk)) and (c) preterm PE vs
everything else (i.e. no PE plus term PE) (AUC, 0.904 (posterior
risk) and 0.808 (prior risk)).

increased from 47% to 75%. When screening for preterm
PE vs no PE based on posterior-risk data, the results were
slightly better (AUC of 0.909 and detection rate of 75%,
at a 10% FPR). However, in that analysis, some of the
samples were ignored (term PE data).

The results of the analysis on the influence of the
mother’s race on test accuracy are shown in Table 3.
The study population included white, black, South Asian,
East Asian and mixed races. However, the numbers of
PE-positive cases of South Asian, East Asian and mixed
races were too low for robust analysis and the AUCs for
these groups were thus not reported. Excluding race from
the analysis was consistently associated with a reduction
in the accuracy of all predictors. For example, the AUC
of screening for preterm PE vs everything else based on
the prior-risk information decreased from 0.808 to 0.750
and the detection rate, at a 10% FPR, decreased from
47% to 38%. When comparing populations, the accuracy
was typically higher for the white population than for
the black population when considering only maternal
factors.

Contribution of biomarkers to prediction accuracy

To test the impact of different factors on the prediction
accuracy, we computed the Shapley values of the different
features used for prediction. The Shapley values represent
the average contribution to the score of each input feature
when computed with different combinations of the other
features. The highest contribution was provided by MAP
and UtA-PI, for which a high value led to a high risk for
preterm PE, followed by PlGF, for which a low value was
associated with a high risk for preterm PE (Figure 3). This
was followed by race, with a higher risk of preterm PE
associated with the black race, and a lower risk associated
with the white race. Other markers, such as PAPP-A, had
a very limited contribution.

Effect of aspirin

To determine the effect of aspirin treatment and the
relationship between our current risk prediction and
treatment, we first checked whether our risk prediction
is associated with aspirin treatment. We computed the
proportion of women receiving aspirin as a function
of their risk percentile and found that most, but not
all, women receiving aspirin were from the group at
high risk for preterm PE. We then tested the efficacy
of aspirin by comparing the proportion of women
with PE according to the predicted risk percentile in
aspirin and non-aspirin groups. While, on lower risk
percentiles, the aspirin group had a low proportion of
women with any PE and preterm PE, on higher risk
percentiles, women taking aspirin actually had a very
high proportion of cases positive for PE and preterm
PE. This is likely to be the consequence of selecting
women to receive treatment because their risk for PE is
very high.

© 2022 International Society of Ultrasound in Obstetrics and Gynecology. Ultrasound Obstet Gynecol 2022; 60: 739–745.
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744 Ansbacher-Feldman et al.

Table 3 Performance of screening model for pre-eclampsia (PE) on test set, trained without taking into account maternal race, overall and
according to race (analysis was not presented separately for other races due to insufficient data)

Detection rate (%) at:

Screening method AUC P 10% FPR 20% FPR 40% FPR

All PE vs no PE
MF

All (n = 60 789) 0.742 (0.722–0.762) < 0.001 33.1 (31.9–34.3) 50.4 (47.3–53.5) 74.6 (69.5–79.7)
White (n = 44 899) 0.740 (0.717–0.763) < 0.001 31.6 (28.5–34.7) 49.8 (45.3–54.3) 73.9 (67.8–80.0)
Black (n = 10 364) 0.725 (0.694–0.756) < 0.001 34.8 (29.7–39.9) 45.2 (39.7–50.7) 70.3 (66.0–74.6)

MF, PAPP-A, PlGF, MAP, UtA-PI
All (n = 60 789) 0.790 (0.778–0.802) < 0.001 43.8 (41.8–45.8) 60.1 (56.0–64.2) 81.3 (79.0–83.6)
White (n = 44 899) 0.730 (0.718–0.742) < 0.001 40.4 (36.9–43.9) 57.1 (55.0–59.2) 77.7 (74.0–81.4)
Black (n = 10 364) 0.820 (0.787–0.853) < 0.001 43.9 (35.7–52.1) 62.6 (54.4–70.8) 85.6 (81.1–90.1)

Preterm PE vs no PE
MF

All (n = 59 551) 0.750 (0.723–0.777) < 0.001 37.6 (31.5–43.7) 54.1 (48.6–59.6) 77.4 (71.1–83.7)
White (n = 44 150) 0.760 (0.697–0.823) < 0.001 45.5 (34.6–56.4) 57.3 (43.2–71.4) 76.5 (65.9–87.1)
Black (n = 9971) 0.680 (0.602–0.758) < 0.001 34.5 (26.3–42.7) 41.4 (29.3–53.5) 69.0 (56.7–81.3)

MF, PAPP-A, PlGF, MAP, UtA-PI
All (n = 59 551) 0.880 (0.857–0.903) < 0.001 62.1 (57.2–67.0) 81.2 (74.6–87.8) 93.3 (89.4–97.2)
White (n = 44 150) 0.870 (0.806–0.934) < 0.001 59.0 (50.4–67.6) 80.2 (66.3–94.1) 90.7 (89.6–91.8)
Black (n = 9971) 0.880 (0.853–0.907) < 0.001 55.0 (43.1–66.9) 76.7 (66.2–87.2) 95.1 (90.6–99.6)

Preterm PE vs everything else
MF

All (n = 60 789) 0.750 (0.727–0.773) < 0.001 38.1 (32.0–44.2) 54.8 (48.1–61.5) 75.7 (71.0–80.4)
White (n = 44 899) 0.760 (0.705–0.815) < 0.001 44.2 (34.1–54.3) 58.8 (44.3–73.3) 77.1 (68.5–85.7)
Black (n = 10 364) 0.680 (0.609–0.751) < 0.001 35.2 (28.1–42.3) 38.6 (29.6–47.6) 66.1 (53.4–78.8)

MF, PAPP-A, PlGF, MAP, UtA-PI
All (n = 60 789) 0.880 (0.857–0.903) < 0.001 60.8 (55.3–66.3) 79.9 (74.0–85.8) 92.4 (88.7–96.1)
White (n = 44 899) 0.860 (0.794–0.926) < 0.001 62.9 (50.6–75.2) 80.2 (66.3–94.1) 90.7 (89.6–91.8)
Black (n = 10 364) 0.870 (0.843–0.897) < 0.001 55.0 (43.1–66.9) 74.3 (65.7–82.9) 95.1 (90.6–99.6)

P-values were calculated here by 1000 random permutations. AUC, area under receiver-operating-characteristics curve; FPR, false-positive
rate; MAP, mean arterial pressure; MF, maternal factors; PAPP-A, pregnancy-associated plasma protein-A; PlGF, placental growth factor;
UtA-PI, uterine artery pulsatility index.

Mean arterial pressure
UtA-PI

Placental growth factor
Black race
White race

Parous, no previous PE
Chronic hypertension

Parous, previous PE
Maternal height

Nulliparous

Shapley value (impact on model output) 

−0.5 0.0 0.5 1.51.0

GA of last birth
Maternal weight

Interpregnancy interval
Family history of PE

PAPP-A

Spontaneous conception
Conception via IVF

South Asian race

Figure 3 Shapley values of predictors of preterm pre-eclampsia (PE)
vs no PE. Red circles represent high input of the variable, while
blue circles represent low input. Values to the right are associated
with higher risk for preterm PE, while values to the left are
associated with lower risk. Input variables are ordered by their
average contribution to the model output (the higher variables have
a stronger effect on the model). GA, gestational age; IVF, in-vitro
fertilization; PAPP-A, pregnancy-associated plasma protein-A;
UtA-PI, uterine artery pulsatility index.

DISCUSSION

Main findings

In this first-trimester screening study, artificial intelligence
and machine learning with the assistance of neural-
network algorithms were used for predicting the risk of
subsequent development of PE. There were two main
findings: first, at a 10% FPR, the prediction of preterm PE
vs no PE plus term PE was 47% when screening based on
maternal characteristics and medical history, increasing
to 75% after the addition of biomarkers and, second, the
inclusion of race in the prediction algorithm was impor-
tant because, when race was not included, the detection
rate of preterm PE vs no PE plus term PE, at a 10% FPR,
of combined screening decreased from 75% to 55–63%.

Comparison with previous studies and implications
for clinical practice

First-trimester prediction of preterm PE is important
because treatment of the high-risk group with aspirin
(150 mg/day from 12 to 36 weeks’ gestation) reduces the
rate of early PE with delivery < 32 weeks by about 90%
and preterm PE by about 60%4,6,22. Consequently, early
prediction and prevention of PE has been adopted by

© 2022 International Society of Ultrasound in Obstetrics and Gynecology. Ultrasound Obstet Gynecol 2022; 60: 739–745.
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the guidelines of the International Society for the Study
of Hypertension in Pregnancy1 and the International
Federation of Gynecology and Obstetrics23.

The predictive performance for preterm PE using
artificial-intelligence and machine-learning methods was
similar to that achieved by the competing-risks
model3–5,24,25. The advantage of the machine-learning
approach is the use of raw biomarker data without the
need for conversion into MoMs, which would simplify
the implementation of screening. Additionally, calculators
from the machine-learning approach can be introduced
easily and rapidly in an automated way with the help of
cloud-based or other online tools. We now have an online
prediction tool based on the model at: https://pepred.math
.biu.ac.il/Home.

The use of Shapley-value analysis20,21 performed in our
study showed a very high contribution of MAP, UtA-PI,
PlGF and race to the prediction of PE risk. There were
a few women with chronic medical conditions, including
chronic hypertension, diabetes mellitus and autoimmune
disease, and among those who had these conditions, the
impact of chronic conditions was high. PAPP-A had a low
contribution to the prediction of PE.

Strengths and limitations

The main strengths of the study are the large population
derived from prospective screening for PE, recording all
the important demographic and medical factors known to
be associated with PE, measurement of MAP and UtA-PI
using standardized protocols and by appropriately trained
practitioners, and measurement of PlGF within 30 min of
collection using an automated machine that was calibrated
on a daily basis.

The limitations of the study are the lack of testing of the
prediction algorithm in other populations. For example,
our finding of the large influence of race on the accuracy
of PE prediction demonstrates a limitation of our study,
as the race element introduces bias towards the most
prevalent race in the study population. Consequently,
it is anticipated that it will be necessary to make
adjustments to the algorithm when it is applied to other
populations.

Conclusion

Our study demonstrates the utility and accuracy of a novel
automated machine-learning approach in first-trimester
prediction of preterm PE. The study also demonstrates the
importance of taking into account race in the prediction
of PE.
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Predicci ón de la preeclampsia basada en aprendizaje automático a partir de caracter ı́ st icas
maternas y biomarcadores del primer trimestre

RESUMEN

Objetivo. Evaluar la precisión de la predicción del riesgo de desarrollo de preeclampsia (PE) en función de las caracterı́sticas demográficas
maternas del primer trimestre, los antecedentes médicos y biomarcadores mediante métodos de inteligencia artificial y aprendizaje automático.

Métodos. Los datos proceden de un cribado prospectivo no intervencionista de la PE a las 11–13 semanas de gestación en dos maternidades
del Reino Unido. Los datos se dividieron en tres subconjuntos. El primer subconjunto, que incluı́a 30 437 sujetos, se utilizó para desarrollar el
proceso de entrenamiento, el segundo subconjunto de 10 000 sujetos se utilizó para optimizar los hiperparámetros de aprendizaje automático y
el tercer subconjunto de 20 352 sujetos se codificó y se utilizó para la validación del modelo. Se utilizó una red neuronal artificial para predecir
el riesgo previo a partir de las caracterı́sticas demográficas y los antecedentes clı́nicos, que fue combinado a continuación con los valores de los
biomarcadores para determinar el riesgo de PE y PE pretérmino con parto a <37 semanas de gestación. Se entrenó una red adicional que no
incluyó la raza como datos de entrada. Entre los biomarcadores se incluyeron el ı́ndice de pulsatilidad de la arteria uterina (UtA-PI), la presión
arterial media (PAM), el factor de crecimiento placentario (FCPI) y la proteı́na plasmática A asociada al embarazo. Todos los marcadores se
introdujeron utilizando valores brutos sin conversión a múltiplos estandarizados de la mediana. La precisión de la predicción se estimó mediante
el área bajo la curva (ABC) de caracterı́sticas operativas del receptor. Además, se calculó la tasa de detección con tasas de falsos positivos (TFP)
del 10%, el 20% y el 40%. También se incluyó el impacto de tomar aspirina. Se calcularon los valores de Shapley para evaluar la contribución
de cada parámetro a la predicción del riesgo. Se utilizó una prueba no paramétrica para comparar el ABC esperada con la obtenida cuando se
mezclaron aleatoriamente las etiquetas y se mantuvieron las predicciones. Para la predicción general se realizaron 10 000 permutaciones de las
etiquetas. Cuando el ABC fue superior a la obtenida en las 10 000 permutaciones, se notificó un valor P de <0,0001. Para el análisis especı́fico
por raza se realizaron 1000 permutaciones. Cuando el ABC fue mayor que el ABC de las permutaciones, se notificó un valor P de <0,001.

Resultados. La tasa de detección de la PE pretérmino frente a no PE, con una TFP del 10%, fue del 53,3% cuando el cribado se realizó sólo
por factores maternos, y el ABC correspondiente fue de 0,816. Estos valores aumentaron respectivamente al 75,3% y 0,909 con la adición de
biomarcadores al modelo. La información sobre la raza fue importante para la precisión de la predicción. Cuando no se utilizó la raza para
entrenar el modelo, con una TFP del 10%, la tasa de detección de PE pretérmino frente a la no PE disminuyó hasta el 34,5–45,5% (para
diferentes razas) cuando el cribado estuvo basado únicamente en factores maternos y hasta el 55,0–62,1% cuando se añadieron biomarcadores.
Los principales factores predictivos de la PE fueron una PAM y un UtA-PI elevados, y un FCPI bajo. La precisión de la predicción de todos los
casos de PE fue inferior a la de la PE pretérmino. Se recomendó el uso de aspirina en los casos de alto riesgo de PE pretérmino. El ABC de todas
las PE frente a no PE fue de 0,770 cuando el cribado se realizó respecto a factores maternos y de 0,817 cuando se añadieron los biomarcadores.
Las tasas de detección respectivas, con una TFP del 10%, fueron del 41,3% y del 52,9%.

Conclusiones. El cribado de la PE mediante un enfoque no lineal basado en el aprendizaje automático no requiere una normalización basada
en la población, y su rendimiento es similar al de la regresión logı́stica. Eliminar la información sobre la raza del modelo reduce su precisión de
predicción, especialmente en el caso de las poblaciones no caucásicas cuando sólo se tienen en cuenta los factores maternos.

© 2022 International Society of Ultrasound in Obstetrics and Gynecology. ORIGINAL PAPER
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