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Introduction

Fetal growth assessment using ultrasound is an integral
part of antenatal care1–3. It starts early in pregnancy
with the measurement of crown–rump length (CRL) and
continues during the course of pregnancy with the mea-
surement of abdominal circumference (AC), femur length
(FL), biparietal diameter and head circumference (HC)2,3.
These measurements have a major impact on pregnancy
care for several reasons: first, dating of pregnancy is
based on CRL in the first trimester or fetal biometry
in the second trimester; second, small or large babies
are at higher risk of adverse perinatal outcome; and,
third, small or large babies are associated with maternal
conditions such as pre-eclampsia and diabetes. The
antenatal identification of fetal growth divergence may
reduce the rate of maternal and fetal complications4–6.

Fetal biometry by ultrasound scan is the translation of
a biological phenomenon such as fetal growth to mea-
surable quantities. Apart from the obvious physiological
variability between individuals, everything that involves
a measurement has variability, which consists of two
elements: the inherent statistical error and measurement
bias attributed to conditions of the measurement, such
as operator’s performance and equipment. In pregnancy,
it becomes even more complex because the measurement
should be adjusted for gestational age using reference
ranges, which introduces another important source of
error. All these types of variability have an additive effect
that is reflected in clinical practice.

A way to identify and mitigate, in part, the issue of
measurement error is to apply measurement-error theory
and quantify the bias and spread of the measurement
through a specific audit for each operator7. We also
believe that simply being aware of the different sources of
error and bias can lead to improved practice.

In the present Opinion, we address the issue of
measurement error in fetal biometry, discuss the role
of audit in safeguarding proper fetal growth assessment
and demonstrate an approach to implementation of fetal
biometry audit in everyday practice, with the aim of
achieving a beneficial impact on antenatal care.

Clinical impact of crown–rump length measurement
error

CRL measurement is an early form of assessment of
fetal growth and is considered to be the optimal way
of dating pregnancy at the time of the first-trimester
nuchal translucency (NT) scan2,8. Additionally, all
first-trimester biomarkers are standardized directly based
on CRL or indirectly by correcting for gestational age
that has been determined using CRL. Therefore, incorrect
and inconsistent CRL measurements affect the basis of
antenatal care and have impact on pregnancy dating,
standardization of biophysical and biochemical indices,
screening for trisomies, assessment of fetal growth and,
ultimately, obstetric decisions9–12.

Despite the extensive use of CRL, there is considerable
debate regarding the charts used, and researchers strive to
increase awareness of the need for standardization of CRL
measurement8–12. The impact of CRL measurement error
is clear and profound, affecting the incidence of clinical
outcomes and, therefore, inducing a different clinical real-
ity. The rates of preterm and post-term birth, small-for-
gestational age (SGA) and large-for-gestational age (LGA)
are highly dependent on correct CRL measurement.

Repeatability studies revealed that, in 95% of cases,
the differences between CRL measurements by two
operators were roughly within ±5 mm or 2.5 days of
gestation9,12,13. The clinical impact of this measurement
error has been examined by simulation studies, which
demonstrated that the performance of prenatal screening
for Down syndrome relies on accurate pregnancy dating
using CRL measurement9,12. The necessity to account for
gestational-age-dependent changes for the markers used
introduces the CRL measurement error into screening9,12.
A relatively small under- or overestimation of CRL results
in considerable respective under- or overestimation of
patient-specific risk for trisomy 21. Underestimating CRL
lowers the expected NT and the expected maternal serum
pregnancy-associated plasma protein-A concentration,
while the expected free β-human chorionic gonadotropin
concentration becomes higher. The NT-based risk
increases and the biochemical risk decreases, result-
ing in an overall reduction of the combined risk9,12.
Overestimating CRL has the opposite effect, increasing
the combined risk. Therefore, a systematic under- or
overestimation of CRL diminishes the operator-specific
screening performance9,12.
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A recent study revealed that even a clinically reasonable
and relatively small measurement error of −2 mm would
shift an estimated fetal weight (EFW) on the 10th per-
centile at the 20-week scan to around the 20th percentile,
and a CRL measurement error of +2 mm would shift
EFW on the 10th percentile to around the 5th percentile10.

Another nationwide cross-sectional study revealed that
the dating formula used has a significant impact on the
evaluation of fetal biometry later in pregnancy11. Conse-
quently, there is an urgent need to increase quality aware-
ness, reach a consensus about reference ranges used and
launch auditing policies for this crucial measurement10,11.

Clinical impact of measurement error in fetal biometry

The main purpose of the assessment of fetal growth is
the quantification of the true fetal weight at the time of
the scan. There are five important sources of variation in
EFW distribution. The first is the biological variation, the
second is the measurement error for the biometric indices
that can be further influenced by the expected values14,
the third is the error introduced by the formula used for
the computation of EFW, the fourth is the error due to
dating by CRL and the fifth is the one related to the
choice of the reference range or standard used to evaluate
EFW computed according to the measurements at the
given estimated gestational age. Reduction of the second
and fourth sources of variation should be the objective
of an effective audit policy, reduction of the third may
potentially be accomplished by improving the algorithm,
while reduction of the biological variation may be
impossible to achieve. Finally, the reduction of the fifth
source of variation should be through selection of the
most methodologically robust reference chart, in view of
the multiple biases discussed in this manuscript, and not
just through selection of the chart that would yield 10%
of small individuals in a given population.

The initial step needed to improve effectiveness of fetal
growth assessment is the standardization of biometric
measurements3. Consistency and adherence to common
techniques is of paramount importance to ensure quality
control. The second step is to deal with the measurement
error. A recent simulation study demonstrated that the
measurement error in fetal biometry causes substantial
error in EFW, resulting in misclassification of SGA and
LGA fetuses15. Assuming random Gaussian errors for
AC, HC and FL, when the 10th and 90th percentiles of
EFW are used to identify true SGA and LGA fetuses, only
78% of SGA and LGA will be classified correctly at the
time of the scan15. However, measurement error cannot
be considered as having a simple random Gaussian distri-
bution given that it has been shown that expected-value
bias frequently occurs14. This conclusion should increase
awareness of the fact that fetal biometry is not equivalent
to fetal weight but rather is a good approximation of it
if essential technical prerequisites are met.

Another important clinical question is how to translate
fetal biometry into clinical practice, considering the
inevitable measurement error. Using EFW percentiles as

a single, fixed diagnostic criterion for SGA or LGA mis-
classifies a significant proportion of fetuses at the time of
assessment4,15. There is also accumulating evidence that
EFW is the best predictor of SGA in the context of predic-
tion models applied as early as 20 weeks of gestation5,6. In
the newly shaped framework of personalized care, EFW
is a powerful continuous biomarker, and we should avoid
using it as a fixed, arbitrary classification criterion4–6,15.
Significant progress was made after switching from a
single NT threshold (3 or 3.5 mm) to continuous use
of this variable, within a multivariate model16–19. The
same should now be applied to EFW in screening for
growth restriction4–6. Probabilistic continuous models
that also include maternal history and other biomarkers
of impaired placentation should improve the prediction
of both imminent and later smallness4 –6. Therefore,
the key aims are, first, to reduce measurement error by
standardization and adequate training; second, to use
EFW as a continuous biomarker in the context of effective
models, taking into account the inherent and unavoidable
statistical error; and, third, to apply audit policies to
ensure application of the abovementioned strategies.

Reference ranges and formulas

Prediction models that aim to personalize care utilize
the information from fetal biometry after adjustment for
gestational age4–6. This adjustment requires the use of
appropriate reference ranges for gestational age. Choosing
charts for fetal and neonatal weight is a crucial decision.
The chart for neonatal weight is the one that affects the
incidence of the outcome of interest, while the chart for
EFW affects the performance of a model, considering that
EFW is the best predictor of growth deviation4–6.

Salomon et al. recognized that including preterm births
when constructing reference ranges is misleading because
preterm birth is associated with growth restriction20. The
authors recommended to use EFW charts to avoid under-
estimation of fetal growth restriction. However, another
issue is the higher variation of birth weight compared with
EFW. An alternative method to resolve these issues is to
use EFW for preterm gestational ages and birth weight for
the term ones, assuming a common median and different
spread around the mean for birth weight and EFW21.
This method overcomes the underestimation of preterm
growth restriction, and it was the basis for the Fetal
Medicine Foundation fetal and neonatal growth charts21.
Another interesting approach to standardizing measure-
ments and reducing the risk of bias is the one of the
INTERGROWTH-21st project. This consortium created
homogeneous charts for pregnancy dating based on CRL
and biometry, using data from many different countries
collected by specifically trained and audited practitioners
blinded to the measurements they were taking22,23. The
authors also reported that, although they included preterm
births, they avoided including high-risk pregnancies24.

When using local descriptive or ethnicity-specific
charts, this will artificially set 10% of the population
below the 10th percentile, but it is also likely that
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being on the 10th percentile of an American or Indian
reference chart does not have the same meaning25,26. The
adoption of a global standard would be a major step
forward, allowing meaningful evaluation, comparison
and collaboration. This would in no way prevent
different practices between different countries for the
same percentile, depending on local health and economic
characteristics. The current international recommenda-
tions are stubbornly attempting to reach a consensus
regarding practices for percentiles that have completely
different definitions and meanings in different countries,
making the objective an unattainable one.

Estimation of fetal weight using ultrasound requires
a regression formula that combines fetal biometry
measurements. Various formulas have been developed
and compared in several studies. It has been recently
reported that Hadlock’s three-parameter (HC, AC and FL)
formula has the least error when assessing the agreement
with the true weight of the fetus27,28. We would,
therefore, recommend the universal use of Hadlock’s
three-parameter formula27.

Audit

Audit may have several forms, including reproducibility
studies with the Bland–Altman analysis, image quality
control by a panel of experts or application of the CUSUM
method. An important methodology that has been used
widely with great success for auditing NT measurements
is the annual assessment of the distributional properties
of the operator’s measurements7. This method quantifies
the systematic error (bias) and random error (spread)
of measurements. Detection of a significant divergence
from the expected distribution increases awareness of
potential clinical implications, indicating the need for
further training and recertification7.

Mathematical background and performance indices
of measurements

The first step required to move forward to implementation
of auditing policies is to elaborate on the mechanics of
measurement error. The distribution of a given biometric
measurement X is defined as: X = mean for gestational
age + biological variation + measurement error.

Biological variation is a distribution with a mean of zero
and a SD similar to the SD of the residuals. Residual is the
difference between the true measurement and the mean
for the gestational age. Biological variation represents
how the measurement varies because of natural variation
of fetal size, and it usually increases with gestational age.
This increase is called heteroscedasticity, and it can be
modeled effectively. The measurement error is considered,
in the absence of additional expected-value bias, to have
a Gaussian distribution with a mean, which is called bias,
and a SD, which is called precision. In this definition, the
bias represents the average deviation from the mean for
gestational age and the precision represents the variation
of the measurement error (Figure 1). The total variance

is the sum of variances due to biological variation and
precision of the measurement.

The audit can be based on the quantification of
systematic-error bias (the average difference between the
measured and the expected value for gestational age) and
the spread of the measurement due to the total variance.
The quality control of a given biometric measurement
assumes, of course, that its variability is known and,
therefore, that a perfectly defined standard is used, with
equations allowing to calculate the expected value, SD
and Z-score of any observed value at any gestational
age. Additionally, data should be assessed for any trend
for changing bias for different gestational ages. The
operators’ distributional properties should be compared
against the acceptable limits of bias, spread and trend
(Figure 2).

A previous simulation study described the impact of bias
on the detection of SGA and LGA babies at the time of
assessment11. The next step should be the quantification of
the effect of deviation of biometry on the early prediction
of SGA and relevant stratification of pregnancy care.

Personalization of care

The implementation of prenatal screening for Down
syndrome by measuring NT thickness caused a major
shift from predetermined, arbitrary and ineffective
criteria, such as increased maternal age, to a personalized
risk assessment1. Ongoing audit of the measurement

X

Bias

Precision

X + bias

Figure 1 Graphical representation of measurement-error model.
Assuming Gaussian errors, bias is mean and precision is spread of
such distribution. Presence of error distribution modifies the mean
of the actual measurement (X) and also contributes to the total
variance.
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Figure 2 Example of an audit for femur length. (a) Distribution of
femur-length measurements according to gestational age at
measurement (GA) with the 50th percentile superimposed. (b)
Gaussian distribution of femur-length residuals (femur length −
predicted mean for GA). Operator-specific bias = 0.56 mm,
spread = 1.47 mm and trend = 0.03.

of NT has had a pivotal role in the quality assurance
and widespread application of the method7 and was
made possible by the use of a single, universally
applicable NT standard that provides a solid foundation
for subsequent combined screening. Obstetric care is
increasingly based on algorithms that combine maternal
factors with biophysical measurements of the mother and
fetus4–6,29,30. The management of the major obstetric
conditions can be based on prediction models applicable
at different stages of pregnancy1. Specifically, for growth
restriction, the contemporary trend is personalized
care at different pregnancy stages, in the context of
policies that can be tailored to the needs and resources
of the healthcare system4–6,30. Also, another form of
personalization is to use customized growth standards
that may improve the detection of adverse perinatal
outcome31.

Personalization of care has been erroneously considered
to be the process of having a different approach to each
case. On the contrary, personalization of care advocates
a universal integrated approach that can be tailored in
terms of prediction, prognostication and decision-making.
Individualization of antenatal care involves applying
universal models on a large scale, leveraging biomarkers
measured according to specific criteria. This method may
be prone to increased measurement error, as previous
studies have demonstrated7,9–12.

The basis of the new era of precision medicine
that emerges is the use of biomarkers in the milieu
of continuous survival models applied in a Bayesian
framework4–6,29,30. Inevitably, the performance of these
algorithms will depend on the correct assessment of
biomarkers, and the operators’ measurement error
may have a profound impact on decision-making and
consequently on perinatal outcome.

Artificial intelligence and fetal biometry

Artificial intelligence (AI) is based on the hypothesis that a
machine can simulate human learning and intelligence32.
We have entered a new era that fulfils three basic
requirements for AI application: big data, computational
power and AI algorithms33. In medicine, non-symbolic
AI simulates learning, perception and pattern recogni-
tion. Machine learning with artificial neural networks
algorithms or deep learning is the main AI approach
used, especially in obstetrics and fetal medicine33. The
main characteristic of this type of AI is that the internal
process that takes place within the algorithm remains to
a great extent ambiguous to the user33.

Research attempts have been focused on combining
deep-learning algorithms with ultrasound scan34. The
aim is to automatically acquire, measure and store
standard fetal biometric planes34. The application of AI
in antenatal ultrasound biometry has some important
challenges. For the highly trained operators, AI must
demonstrate usefulness in reducing scanning time and
improving the clinical workflow. AI should be compared
with standard assessment with regard to measurement
error. Will AI reduce variability associated with biometric
measurement? For operators lacking specialist skills, the
crucial question is whether AI will substitute the lack of
training and experience. Moreover, it will be interesting
to see whether AI will transform ultrasound scan practice
and training by shifting our attention from the AI-acquired
biometry to other aspects of imaging. Another important
application is the use of deep-learning algorithms to assist
a basic scan, including fetal biometry, considering the
limited capacity of current databases35.

Alan Turing laid the foundation for AI by introducing
the homonymous Turing test in 195036. The Turing
test, otherwise known as the imitation game, assesses a
machine’s ability to exhibit intelligence indistinguishable
from that of a human. The machines that pass this test are
considered to be AI machines. It is probable that, sooner
or later, the Turing test will be inverted because AI will be
at the minimum equivalent to human intelligence. In fetal
medicine, biometry may be a field in which this inversion
of the Turing’s theorem is possible.

Conclusion and future direction

The transition to a risk-based obstetric management
is rapid, and algorithm-driven individualized pregnancy
care is becoming the new clinical reality1. The increasing
worldwide use of prediction algorithms for fetal trisomies,
pre-eclampsia, growth restriction and preterm birth is
anticipated to improve fetal, maternal and perinatal
outcomes.

The decisions for interventions in fetal growth disorders
should be based on a personalized probabilistic frame-
work. We must move forward to an integrated early-risk
assessment for smallness/growth restriction and macro-
somia, in which EFW is a potent biomarker amongst
others1,4–6. This should allow effective stratification and

© 2023 International Society of Ultrasound in Obstetrics and Gynecology. Ultrasound Obstet Gynecol 2023; 61: 431–435.
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personalization of care1,4–6. A prerequisite for this new era
of precision medicine is correct ultrasound measurements
according to strict criteria and stringent standardization of
our practices and standards at each of the steps (pregnancy
dating, biometric measurements, EFW formulas, pre-
scriptive standards used). We must go beyond the current
debate regarding the type of reference ranges used and the
role of population characteristics. Measurement accuracy
is becoming the cornerstone of modern obstetrics, and we
anticipate that the implementation of audit policies should
stimulate a discussion that will probably lead to a con-
sensus for the standardization of measurements. Despite
the increasing use of fetal biometry and the fact that the
need for quality control in fetal biometry has long been
recognized, fetal biometry is used without any systematic
quality control. An important need for our clinical prac-
tice is the introduction of vigorous audit. This will ensure
the required quality for the implementation of algo-
rithms, which may have a profound impact on perinatal
outcome.

Improving perinatal outcome is an objective that will
remain unfulfilled unless we adopt common universal
standards and efficient quality-control policies. The
ultimate goal through a process of universal practice
and audit is to ensure adequate training with adherence
to common techniques. The implementation of systematic
auditing should enhance quality of care and awareness
amongst health providers.
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