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Preterm preeclampsia screening using biomarkers:

\ '.) Check for updates

combining phenotypic classifiers into robust

prediction models

Grégoire Thomas, PhD; Argyro Syngelaki, PhD; Karam Hamed, MD; Anais Perez-Montano, MD;
Ana Panigassi, MD; Robin Tuytten, PhD; Kypros H. Nicolaides, MD

BACKGROUND: Preeclampsia screening is a critical component of
antenatal care worldwide. Currently, the most developed screening test
for preeclampsia at 11 to 13 weeks’ gestation integrates maternal demo-
graphic characteristics and medical history with 3 biomarkers—serum
placental growth factor, mean arterial pressure, and uterine artery pulsatil-
ity index—to identify approximately 75% of women who develop preterm
preeclampsia with delivery before 37 weeks of gestation. It is generally
accepted that further improvements to preeclampsia screening require the
use of additional biomarkers. We recently reported that the levels of spe-
cific metabolites and metabolite ratios are associated with preterm pre-
eclampsia. Notably, for several of these markers, preterm preeclampsia
prediction varied according to maternal body mass index class. These
findings motivated us to study whether patient classification allowed for
combining metabolites with the current biomarkers more effectively to
improve prediction of preterm preeclampsia.

OBJECTIVE: This study aimed to investigate whether metabolite bio-
markers can improve biomarker-based preterm preeclampsia prediction in 3
screening resource scenarios according to the availability of: (1) placental
growth factor, (2) placental growth factor+mean arterial pressure, and (3) pla-
cental growth factor+mean arterial pressure-+uterine artery pulsatility index.
STUDY DESIGN: This was an observational case—control study,
drawn from a large prospective screening study at 11 to 13 weeks’ gesta-
tion on the prediction of pregnancy complications, conducted at King's
College Hospital, London, United Kingdom. Maternal blood samples were
also collected for subsequent research studies. We used liquid chroma-
tography—mass spectrometry to quantify levels of 50 metabolites previ-
ously associated with pregnancy complications in plasma samples from
singleton pregnancies. Biomarker data, normalized using multiples of
medians, on 1635 control and 106 preterm preeclampsia pregnancies
were available for model development. Modeling was performed using a
methodology that generated a prediction model for preterm preeclampsia
in 4 consecutive steps: (1) z-normalization of predictors, (2) combinatorial
modeling of so-called (weak) classifiers in the unstratified patient set and
in discrete patient strata based on body mass index and/or race, (3) selec-
tion of classifiers, and (4) aggregation of the selected classifiers (ie, bag-
ging) into the final prediction model. The prediction performance of
models was evaluated using the area under the receiver operating charac-
teristic curve, and detection rate at 10% false-positive rate.

RESULTS: First, the predictor development methodology itself was eval-
uated. The patient set was split into a training set (2/3) and a test set (1/3)
for predictor model development and internal validation. A prediction
model was developed for each of the 3 different predictor panels, that is,
placental growth factor+metabolites, placental growth factor+mean arte-
rial pressure+metabolites, and placental growth factor+mean arterial
pressure-+utering artery pulsatility index+metabolites. For all 3 models,
the area under the receiver operating characteristic curve in the test set
did not differ significantly from that of the training set. Next, a prediction
model was developed using the complete data set for the 3 predictor pan-
els. Among the 50 metabolites available for modeling, 26 were selected
across the 3 prediction models; 21 contributed to at least 2 out of the 3
prediction models developed. Each time, area under the receiver operating
characteristic curve and detection rate were significantly higher with the
new prediction model than with the reference model. Markedly, the esti-
mated detection rate with the placental growth factor+mean arterial pres-
sure+metabolites prediction model in all patients was 0.58 (95%
confidence interval, 0.49—0.70), a 15% increase (P<.001) over the
detection rate of 0.43 (95% confidence interval, 0.33—0.55) estimated
for the reference placental growth factor+mean arterial pressure. The
same prediction model significantly improved detection in Black (14%)
and White (19%) patients, and in the normal-weight group (18.5<body
mass index<25) and the obese group (body mass index>30), with
respectively 19% and 20% more cases detected, but not in the over-
weight group, when compared with the reference model. Similar improve-
ment patterns in detection rates were found in the other 2 scenarios, but
with smaller improvement amplitudes.

CONCLUSION: Metabolite biomarkers can be combined with the
established biomarkers of placental growth factor, mean arterial pressure,
and uterine artery pulsatility index to improve the biomarker component of
early-pregnancy preterm preeclampsia prediction tests. Classification of
the pregnant women according to the maternal characteristics of body
mass index and/or race proved instrumental in achieving improved predic-
tion. This suggests that maternal phenotyping can have a role in improving
the prediction of obstetrical syndromes such as preeclampsia.
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Why was this study conducted?

index (UTA-PI).

Key findings

This study aimed to investigate whether metabolite biomarkers can improve bio-
marker-based preterm preeclampsia prediction in 3 screening resource scenarios
according to the availability of: (1) placental growth factor (PIGF), (2) PIGF
+mean arterial pressure (MAP), and (3) PIGF+MAP+uterine artery pulsatility

Prediction models were developed on the basis of patient phenotyping and com-
bining metabolites with the established biomarkers PIGF, MAP, and UTA-PL
Improved preterm preeclampsia prediction was achieved when modeling with
metabolites compared with the reference models without metabolites. Improved
prediction was also observed in race classes (Black/White), and body mass index
(BMI) classes of 18.5 to <25 and >30, but not for the BMI class of 25 to <30.

What does this add to what is known?
Metabolites can improve the biomarker-based component of preterm pre-
eclampsia prediction when maternal characteristics are considered.

Introduction
reeclampsia complicates approxi-
mately 5% of  pregnancies

globally® and remains a significant
cause of maternal and fetal morbidity
and mortality.”" In the United States,
there is an increasing incidence of
hypertensive disorders of pregnancy.”®
Preeclampsia screening is a crucial com-
ponent of antenatal care worldwide.”
The confirmation that timely initiation
of aspirin prophylaxis in pregnant
women identified at risk of preeclamp-
sia significantly reduces the incidence of
preterm preeclampsia® reaffirmed the
clinical utility of effective early preg-
nancy screening.”'’ This spurred the
exploration of novel prediction
technologies,”’12 and improvements to
established prediction solutions'’ to
better identify pregnant women who
would benefit from pharmaceutical
intervention,'* tailored prenatal care,”
and education.'

In many countries, clinical practice
continues to rely exclusively on the tab-
ulation of maternal risk factors for
determining preeclampsia  risk,'” >
which has limitations in terms of pre-
dictive accuracy. In contrast, the screen-
ing test for preeclampsia risk developed
by the Fetal Medicine Foundation
(FMF) combines maternal risk factors
into a competing risk model,”! and then
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uses Bayes’ theorem to combine the
resulting previous-risk distribution with
biomarker multiples of the median
(MoM) to derive patient-specific risks
of delivery with preeclampsia before 37
weeks of gestation.”” In the most per-
formant version of the FMF prediction
model, patients’ previous risks are
updated with the following biomarkers:
Doppler velocimetry of the uterine
arteries (uterine artery pulsatility index
[UTA-PI]), mean arterial pressure
(MAP), and blood levels of the placental
growth factor (PIGF) protein.”> A
machine learning—based classifier using
the same input variables did not
markedly improve detection rate (DR)
over the original FMF prediction
model,"” reaffirming the need for addi-
tional variables to improve prediction
efficiency further.

We recently verified the association
between early-pregnancy plasma levels
of specific metabolites and metabolite
ratios, and preterm preeclampsia,
whereby for several of these biomarkers
the preterm preeclampsia prediction
varied with maternal body mass index
(BMI),** corroborating the contempo-
rary concept that different maternal risk
profiles exist.”” %’

Herein we investigate whether
metabolite biomarkers can improve the
prediction  performance of the

progressively more performant bio-
marker panels currently used in risk
prediction, namely, PIGF, PIGF+MAP,
and PIGF+MAP+UTA-PI. These 3 ref-
erence models reflect 3 scenarios of
availability of screening resources:
access to laboratory testing only (PIGF),
additional access to primary prenatal
care (PIGF+MAP), and finally a setting
with access to certified sonographers
(PIGF+MAP+UTA-PI).

We used maternal traits associated
with different a priori risks as putative
proxies for >1 wunderlying discrete
maternal risk profiles.”* With both
maternal BMI***°  and  maternal
race”>*"**’! being well-documented
phenotypic traits associated with pre-
eclampsia rates, we used BMI classifica-
tion’> and maternal race to create
patient strata.

Because patient spectrum effects are
hypothesized to explain the poor gener-
alizability of biomarker findings in
preeclampsia,”*>’* we adopted a
machine-learning methodology
whereby a selection of sparse classifiers,
as developed within different patient
strata, were aggregated into a final pre-
diction model.”> For any patient, the
risk score is therefore the result of aver-
aging all scores across each stratum the
patient belongs to.

In this follow-up analysis of a previ-
ously reported -early-pregnancy bio-
marker data set,”* we first evaluated the
machine-learning methodology used to
develop predictive models. All available
preterm preeclampsia cases (n=106)
and control pregnancies (n=1635) were
split into a training set (2/3) and test set
(1/3) for model development and subse-
quent internal validation. Next, model
development was repeated using the
complete data set to enable the assess-
ment of predictive performance within
the different patient strata.’® To gauge
the added value of considering metabo-
lite biomarkers in the biomarker-based
component of preterm preeclampsia
screening tests, the preterm preeclamp-
sia prediction of the 3 resulting predic-
tion models was compared with that of
their respective reference biomarker
models, that is, PIGF, PIGF+MAP, and
PIGF+MAP+UTA-PL



TABLE 1

Characteristic

Baseline characteristics of the study population

Preterm PE
(n=106)

Controls
(n=1635)

Gestational age at sampling (wk)
Maternal age (y)
Race/ethnicity?
White
Black
South Asian
East Asian
Mixed
Height (cm)
Weight (kg)*
Body mass index class (kg/m?)?
<18.5
18.5t0 <25
2510 <30
>30
Conception
In vitro fertilization
Ovulation drugs
Smoking
Diabetes mellitus
Type 1
Type 2
SLE/APS
Chronic hypertension®
Family history of PE?
Gestational age at delivery (wk)?
Birthweight (g)*
Birthweight percentile (%)?

12.6 (12.22—12.98)
30.5 (27.5—35.4)

12.7 (12.3-13.0)
32.1 (28.4—35.5)

48 (45.3) 1025 (62.7)
51 (48.1) 433(265)
4(3.8) 66 (4.0)
1(0.9) 52(3.2)
2(1.9) 59 (3.6)
164 (160—167) 165 (160—169)
( (

75.2 (65.8—87.0)

34.2 (31.6-35.7)
1771 (1354—2093)

65.4 (59.0—75.7)

39.2 (38.7—39.5)
3295 (3100—3515)

1(0.9) 33(2.0)
32 (30.2) 911 (55.7)
33(31.1) 419 (25.6)
40 (37.7) 272 (16.6)
7 (6. 45 (2.8)
10 13(0.8)
438 91 (5.6)
0(0.0) 11(0.7)
4(3.8) 15(0.9)
1(0.9) 6 (0.4)
15(14.2) 24 (1.5)
11 (10.4) 58 (3.5)

( (

( (

(

0.48 (0.03—10.14)

Data are represented as median (interquartile range) or number (percentage).
APS, antiphospholipid syndrome; PE, preeclampsia; SLE, systemic lupus erythematosus.
AChi-square or Mann—Whitney U test, as appropriate (P<.01).

47.13 (29.19—66.87)

Thomas. Biomarker models for preterm preeclampsia prediction. Am J Obstet Gynecol MFM 2023.

Materials and Methods

Study population

This observational case—control study
was drawn from a large prospective

first-trimester assessment according to
the  FMF-described
including collecting blood samples for
first-trimester  biochemical

protocols,

21,23

screening

screening study at 11° to 13° weeks’ ges-
tation on the prediction of pregnancy
complications conducted at King’s Col-
lege Hospital, London, United King-
dom, between 2010 and 2015.”
Pregnant women received a complete

and biobanking.

Pregnancy outcome data were col-
lected for the study participants, and
the American College of Obstetricians
and Gynecologists (2019) criteria were
applied for preeclampsia diagnosis.’”

All women in the screening study pro-
vided written informed consent; the UK
National Research Ethics Committee
approved the study (reference number
02-03-033).

The case—control study involved sin-
gleton pregnancies only. All major
adverse pregnancy outcomes, that is,
preeclampsia, fetal growth restriction,
gestational diabetes mellitus, and spon-
taneous preterm birth (n=866) were
represented, as well as uncomplicated
pregnancies (n=1635); the latter served
as controls in biomarker analyses.

Herein we report on the nested data
for preterm preeclampsia (n=106) vs
controls. Preterm preeclampsia was
defined as delivery with preeclampsia
before 37 weeks of gestation. Descrip-
tive statistics were generated and pre-
sented as means (SD), median
(interquartile range [IQR]), and fre-
quency of observations (percentages), as
appropriate. Comparisons of patient
characteristics and pregnancy outcomes
between women with preterm pre-
eclampsia and controls were performed
using chi-square or Mann—Whitney U
tests (Table 1).

Biomarker data
PIGF, MAP, and UTA-PI measure-
ments were made available by the FMF
(London, United Kingdom). With the
MAP data generated while adhering to
strict quality assurance,'™®”” random
Gaussian noise (coefficient of variance
10%) was added to MAP to render it
more representative of routine prac-
tice.*0*2 Ordinarily, UTA-PI measure-
ment quality is subject to a sonographer
certification program (FMF); therefore,
UTA-PI data were used unaltered.
Relative concentrations of 50 metab-
olite biomarkers previously associated
with adverse pregnancy outcomes were
available from the previously reported
biomarker study24; the metabolites are
listed in Supplemental Table 1. Concen-
tration ratios for all metabolite pairs
were also generated because metabolite
ratios are more strongly associated with
preeclampsia than single metabolites.”*
Before modeling, observed predictor
values were normalized using MoM,"
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as described earlier,”* and summarized
in the Supplemental Methods.

Development prediction models

The following predictors (biomarkers)
were used for model development:
PIGF, MAP, UTA-PI, 50 metabolites,
and all metabolite ratios. The complete
statistical modeling workflow is sum-
marized in Supplemental Figure 1.

Modeling methodology

Modeling was performed using a meth-
odology (SQU4RE, Lokeren, Belgium)
that generates prediction models in 4
consecutive steps: (1) z-normalization
of predictor values, (2) combinatorial
modeling of classifiers in the unstrati-
fied patient set and in discrete patient
strata based on BMI and/or race, (3)
selection of classifiers, and (4) aggrega-
tion of classifiers (ie, bagging) into the
final prediction model. The modeling
methodology steps are fully detailed in
the Supplemental Methods.

The predictive performance of the
final models was estimated using DR at
a 10% false-positive rate (FPR). The
area under the receiver operating curve
(AUC) and DR at 10% FPR were
reported as point estimates and 95%
confidence intervals (Cls), and plotted
as point estimate and IQR, using
DeLong’s method and bootstrapping
(2000 iterations), respectively.***”

Evaluation of the modeling
methodology

The patient set was split into a training
set (2/3) and test set (1/3) for predictor
development and internal validation
(detailed in Supplemental Methods).
Preterm preeclampsia prediction mod-
els were developed in the training set
using the following prediction panels:
PIGF+metabolites, PIGF+MAP+metab-
olites, =~ and  PIGF+MAP+UTA-PI
+metabolites.

The modeling methodology was eval-
uated by comparing model prediction
in the train and test set using the AUC
statistic."* The internal validation crite-
rion was the absence of statistically sig-
nificant difference in AUC in all 3
scenarios (DeLong test, P<.05, no cor-
rection for multiple testing).
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Preterm preeclampsia prediction
models
Following its evaluation, the modeling
methodology was applied to the com-
plete data set as recommended.” This
permitted estimating model performance
across patient strata by maximizing sam-
ple size. A model was developed for each
of the 3 biomarker panels (Supplemental
Figure 2). Prediction performances of
the models were compared in all patients
and in the following patient strata based
on BMI classes and main races: normal
weight (18.5<BMI<25), overweight
(25<BMI<30), obese (BMI>30), Black,
and White. The final 3 models were
benchmarked on AUC and DR at 10%
FPR against their respective reference
marker panels: PIGF, PIGF+MAP, and
PIGF+MAP+UTA-PI (Table 2). A boot-
strap test was used to estimate the signif-
icance of the difference in DR between
the model with metabolites and the ref-
erence model (10° iterations; P<.05; no
correction for multiple testing).

All statistical analyses were per-
formed in R software (R Core Team,
Vienna, Austria).46

Results

Within the study population (Table 1),
patients of self-reported Black race and
with higher BMIs were more likely to
develop preterm preeclampsia. Most of
the patients identified as White or
Black; 7 cases (6.6%) and 177 controls
(10.8%) were from other maternal race
groups. Across BMI classes, case num-
bers increased proportionally with BMI,
with case—control ratios ranging from 1
to 33 in the underweight group
(BMI<18.5) to 1 to 6.8 in the obese
group (BMI>30). In the preterm pre-
eclampsia group, the median gestational
age at delivery was 34.2 weeks, and the
median birthweight was 1771 g. Both
outcome metrics were significantly
lower than in the control group, with
medians of 39.2 weeks and 3295 g,
respectively.

Evaluation of the modeling
methodology

The AUCs for the 3 models were not
significantly different in the test set and
the training set for the different

predictor panels considered (Figure 1).
In both training and test sets, the
observed DRs at 10% FPR for the mod-
els were all >50%. Compared with the
training set, the DRs were 3% to 8%
lower in the test set (Supplemental
Table 3). These results confirm that the
modeling methodology effectively limits
model overfitting.

Preterm preeclampsia prediction
models

In accordance with the 3 scenarios
under evaluation, 3 models for preterm
preeclampsia prediction were developed
using the complete data set.

The Venn diagram in Figure 2 sum-
marizes the biomarkers used in the 3
models. Of the 26 metabolites used in
any of the 3 models, 21 metabolites
were selected in at least 2 models,
respectively. Of note, the 21 recurrent
metabolites cover different chemical
classes (Figure 2). Typically, the metab-
olites feature primarily as metabolite
ratios in the classifiers (Supplemental
Figure 2).

Under the selection criteria applied,
only classifiers comprising at most 4
predictors were forwarded for bagging
(not shown). Respectively, 30, 40, and
54 classifiers were combined to con-
struct the final models for the 3 panels:
PIGF+metabolites, PIGF+MAP+metab-
olites, and  PIGF+MAP+UTA-PI
+metabolites.

The prediction statistics in Table 2
and the plotted DRs at 10% FPR
(Figure 3) show that in each of the 3
biomarker-availability scenarios investi-
gated, the prediction models with
metabolites  yielded  significantly
improved prediction performances.

In view of assessing clinical utility,
DRs at 10% FPR are deemed more
informative than AUC. With an
increase of 15% in DR (P<.001), the
prediction with the PIGF+MAP+metab-
olites model was markedly higher than
that of the PIGF+MAP reference model.
For this model, similar improvements
in DR were observed across the mater-
nal race and BMI strata. In Black and
White patients, 14% (P<.05) and 19%
(P<.01) more cases were detected com-
pared with the reference model. In
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TABLE 2
Prediction statistics for hiomarker models developed for the 3 scenarios considered

Panel 1 Panel 2 Panel 3
Model: PIGF+metabolites Model: PIGF+MAP+metabolites Model: PIGF+MAP+UTA-Pl+metabolites
Reference: PIGF Reference: PIGF+MAP Reference: PIGF+MAP+UTA-PI
AUC DR at 10% FPR AUC DR at 10% FPR AUC DR at 10% FPR
(95% Cl) (95% Cl) (95% Cl) (95% Cl) (95% Cl) (95% Cl)

Patient stratum  Patient numbers Model Reference Model Reference Model Reference Model Reference Model Reference Model Reference
Al PT-PE=106 0.81° 0.76 0.52° 0.44 0.85° 0.81 0.58° 0.43 0.86° 0.83 0.62° 0.55

Ctrls=1635 (0.77—-0.85) (0.71-0.81) (0.42—-0.61) (0.34—0.54) (0.81-0.89) (0.77—0.85) (0.49—-0.70) (0.33—0.55) (0.82—0.90) (0.79-0.87) (0.53—0.73) (0.44—0.66)
Black PT-PE=51 0.81° 0.77 0.53 0.47 0.85° 0.82 0.63° 0.49 0.86 0.84 0.67 0.59

Ctrls=433 (0.75—-0.87) (0.69—0.84) (0.39—-0.65) (0.33—0.61) (0.79—-0.91) (0.76—0.88) (0.47-0.78) (0.33—0.67) (0.81-0.92) (0.78—0.89) (0.49—-0.80) (0.41-0.75)
White PT-PE=48 0.812 0.75 0.54 0.46 0.85° 0.80 0.58° 0.40 0.84° 0.80 0.60 0.54

Ctrls=1025 (0.75—-0.87) (0.67—-0.83) (0.40—0.69) (0.29-0.63) (0.79—-0.91) (0.74—0.85) (0.42—-0.73) (0.25—0.54) (0.79—-0.90) (0.74—-0.87) (0.46—0.73) (0.38—0.69)
18.5<BMI<25  PT-PE=32 0.85% 0.78 0.56 0.44 0.917 0.85 0.69° 0.50 0.92° 0.89 0.75 0.72

Ctrls=911 (0.80—0.91) (0.69—-0.87) (0.38—0.75) (0.25—0.66) (0.87—-0.95) (0.80—0.90) (0.50—0.84) (0.31—0.66) (0.88—0.96) (0.83—0.94) (0.56—0.91) (0.56—0.88)
25<BMI<30 PT-PE=33 0.76 0.74 0.48 0.52 0.78 0.76 0.45 0.39 0.81 0.80 0.55 0.55

Ctrls=419 (0.67—0.86) (0.63—0.85) (0.30—-0.67) (0.33—0.67) (0.70—-0.87) (0.68—0.85) (0.24—-0.73) (0.21-0.58) (0.73—0.89) (0.72—0.89) (0.36—0.73) (0.33—0.73)
BMI >30 PT-PE=40 0.82 0.78 0.53 0.40 0.87° 0.82 0.68° 0.48 0.86° 0.81 0.60° 0.45

Ctrls=272 (0.76—0.89) (0.70—0.85) (0.35—0.68) (0.25—0.60) (0.81—-0.92) (0.76—0.89) (0.50—0.80) (0.30—0.65) (0.80—0.91) (0.75—0.88) (0.43—0.75) (0.28—0.63)

Predictive performances of models and their references are represented (AUC and DR at 10% FPR).

AUC, area under the receiver operating characteristic curve; BMI, body mass index; C/, confidence interval; Ctrls, controls; DR, detection rate; FPR, false-positive rate; MAP, mean arterial pressure; PT-PE, preterm preeclampsia; UTA-PI, uterine artery pulsatility index.

Difference in predictive performance between model and reference: DeLong or bootstrap test as appropriate.
p<.01. °P<.05. °P<.001.

Thomas. Biomarker models for preterm preeclampsia prediction. Am J Obstet Gynecol MFM 2023.




FIGURE 1
Modeling methodology evaluation

train test
p:0.47
0.90 —
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PIGF +
metabolites

train test train test
p:0.10 p:0.50
L 4
<@
PIGF + PIGF +
MAP + MAP +
metabolites UTA-PI +
metabolites

Per biomarker panel: AUCs of the prediction model both in the train and test set. Estimated AUC and
95% confidence interval. P values: test for differences in AUC, train vs test set, DeLong’s method,

no correction for multiple testing.

AUC, area under the receiver operating characteristic curve; MAP, mean arterial pressure; UTA-P), uterine artery pulsatility index.

Thomas. Biomarker models for preterm preeclampsia prediction. Am J Obstet Gynecol MFM 2023.

obese patients, the increase in DR
amounted to 20% (P<.01), and in nor-
mal-weight patients (18.5<BMI<25) to
19% (P<.01). Interestingly, the AUC
surpassed the symbolic value of 0.90 in
the normal-weight group (Table 2; Sup-
plemental Figures 3 and 4). In the over-
weight group (25<BMI<30), the PIGF
+MAP+metabolites model only showed
a modest DR increase (6%; nonsignifi-
cant [ns]) compared with the reference
model.

In comparison, both PIGF+metabo-
lites and PIGF+MAP+UTA-PI+metabo-
lites increased DR by 8% over their
respective reference models in all
patients. For PIGF+metabolites, all the
observed differences in DRs relative to
the PIGF reference model were positive
across the different race and BMI strata
(ranging from 6%—13%), albeit not
meeting significance. No improvement
was found in the overweight class (—3%;
ns). Likewise, PIGF+MAP+UTA-PI
+metabolites delivered improved DRs
ranging from 3% (normal weight; ns) to
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15% (obese; P<.05) over its reference
across the different patient strata, with
no improvement observed in the over-
weight class (0%).

Of note, the PIGF+MAP+metabolites
model achieved prediction similar to
that of the third reference model (ie,
PIGF+MAP+UTA-PI), with AUCs of
0.85 (95% CI, 0.81—0.89) and 0.83 (95%
CIL 0.79—0.87) and DRs at 10% FPR of
0.58 (95% CI, 0.49—0.70) and 0.55 (0.44
—0.66) for the developed model and the
reference model, respectively (Table 2).

Post hoc examination of the selected
classifiers for bagging in the PIGF
+MAP-+metabolites panel confirmed
that for the overweight stratum, other
than the reference model, only 2 classi-
fiers met the inclusion criterion. There-
fore, the performance observed in the
overweight stratum was primarily
driven by classifiers selected on patients
with any BML A similar lack of predic-
tion improvement in the overweight
class was also found for the other 2 pre-
diction models developed.

Comment

Principal findings

We demonstrated that specific panels of
metabolite biomarkers can effectively be
combined with the best available early-
pregnancy biomarkers for preterm pre-
eclampsia, namely PIGF, MAP, and
UTA-P]I, to further improve biomarker-
based prediction.

A machine-learning methodology
based on combining a selection of
sparse classifiers into a final prediction
model was devised and successfully
evaluated. The modeling methodology
was applied to develop 3 new prediction
models by combining metabolites either
with PIGF, PIGF and MAP, or PIGF,
MAP, and UTA-PL The subclassifica-
tion of the study population into dis-
crete maternal phenotypes, based on
BMI and race, yielded sparse pheno-
typic biomarker-based classifiers with
enhanced associations with preterm
preeclampsia for combination into the
final prediction models. Within the 50
metabolites available for modeling,”* 26
metabolites featured in any of the 3 pre-
diction models, with 21 being common
between at least 2 of the models. Nota-
bly, metabolites were typically present
as metabolite ratios. The 3 models’ pre-
diction performances were evaluated
using DR at 10% FPR, a gauge of clini-
cal usability, and compared with the
performance of the reference models,
PIGF, PIGF+MAP, and PIGF+MAP
+UTA-PI. We found every time that
including metabolites in the prediction
models significantly improved DRs for
preterm preeclampsia at a 10% FPR
over the respective comparator models,
whereby the amplitude DR improve-
ments exceeded the observed 3% to 8%
overfitting found during evaluation of
the modeling methodology. The predic-
tion models delivered consistent
increases in DRs for both Black and
White women. Using BMI-based
grouping, the prediction models typi-
cally improved DRs in the normal-
weight group and the obese group, but
not in the overweight group. The mag-
nitude of the increases in DRs was
found to be the largest when metabo-
lites were combined with PIGF and
MAP.



FIGURE 2

Biomarkers in the 3 prediction models
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irubin; CAR(2:0), acetylcarnitine; CAR(8:0), octanoylcarnitine; CAR(10:0), decanoylcarnitine; CAR(12:0), dodecanoylcarnitine; CAR(16:0),
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sn-glycero-3-phospho-L-serine; SDMA, symmetric dimethylarginine; Thr, threonine; UTA-PI, uterine artery pulsatility index.
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Results in the context of what is
known

Romero et al’’ recently demonstrated
that a subclassification of obstetrical
syndromes by placental pathology led
to stronger associations between bio-
markers and obstetrical diseases. Our
translational research applied the same
conceptual framework to improve bio-
marker-based preterm preeclampsia
prediction by assuming the existence of
distinct maternal risk phenotypes,”®**
for which prediction may require differ-
ent combinations of biomarkers. With-
out readily available methods to
effectively discern maternal risk pheno-
types, we used maternal characteristics
of “race” and “BMI” for disaggregating
the study population into patient strata
and eliciting phenotypic prediction per-
formance. In a further recognition of
the complexity of predicting a

syndrome, the applied modeling meth-
odology involved a machine-learning
technique, that is, bagging. This tech-
nique is highly effective in applications
wherein finding a good model in 1 step
is impossible because of the complexity
and scale of the problem,"” and achieves
more precise predictions by averaging
the predictions from the different
classifiers.*’

Our data suggest that self-identified
maternal race can align with differential
risk profiles and can be used to expose
differential preterm preeclampsia risk
prediction. The prospect of using bio-
markers to enhance prediction in Black
women is noteworthy given that they
experience higher incidences of pre-
eclampsia and have poorer perinatal
outcomes.””*!

The modeling methodology did not
yield effective prediction improvement

in the overweight group. This is likely
attributable to poor alignment of the
patients within this group with a domi-
nant risk profile, blunting the added
value of subclassification to expose
enhanced prediction.  Phenotyping
pregnant women on the basis of a
metabolite fingerprint of BMI’” instead
of their calculated BMI may further
improve preterm preeclampsia predic-
tion using our methodology.

In this research, metabolite bio-
markers were selected into models on
the basis of their ability to improve the
prediction performance of established
biomarkers. Many of the metabolites
selected in >2 of the prediction models
overlapped with ones that we confirmed
to be significantly associated (P<.05)
with preterm preeclampsia in all
women, or associated specifically with
preterm preeclampsia in the BMI<25
class or the BMI>30 class.”* In addition,
we identified an additional set of metab-
olites that were not significantly associ-
ated with preterm preeclampsia on their
own,”* but played a role in improving
existing biomarkers. 1-Palmitoyl-2-
hydroxy-sn-glycero-3-phosphocholine
was reported previously to be associated
with small for gestational age,”" and 1-
stearoyl-2-hydroxy-sn-glycero-3-phos-
phocholine was shown to differentiate
between preeclampsia and gestational
diabetes mellitus in a previous study.’”
Palmitoylcarnitine and lactic acid were
reported to be associated with late-onset
preeclampsia,”** 1-(9Z-octadecenoyl)-
sn-glycero-3-phospho-L-serine ~ with
preeclampsia,” and myristic acid with
gestational diabetes mellitus.”>”” With
smoking status being negatively associ-
ated with preeclampsia risk,”® the selec-
tion of cotinine, a nicotine metabolite,”’
was unsurprising.

Clinical implications

The performance of the FMF prediction
model, which combines the competing
risk model (for maternal risk factors)
with the biomarkers PIGF, MAP, and
UTA-PI for preterm preeclampsia pre-
diction, has been validated in many
independent settings,15 and its clinical
utility in conjunction with aspirin pro-
phylaxis has been demonstrated.™” """
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FIGURE 3
Predictive performance of the models developed for the 3 biomarker panels
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However, the need for adherence to
strict protocols for blood pressure mea-
surement and the limited availability of
certified sonographers have thus far
hampered its widespread implementa-
tion in settings such as the United
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States. In recognition of this clinical
reality, this translational research con-
sidered 3 scenarios for prediction model
development reflecting 3 levels of avail-
ability of screening resources. At a mini-
mum, access to laboratory testing for

blood-borne biomarker analyses was
assumed (PIGF+metabolites), possibly
augmented with access to primary care
(PIGF+MAP+metabolites), and ideally
with access to certified sonographers
(PIGF+MAP+UTA-PI+metabolites).
Similarly, we added noise to the avail-
able best-practice MAP data to render
the study data more representative of
routine practice.”""* Our research indi-
cates that the inclusion of metabolites
into laboratory testing can improve pre-
term preeclampsia prediction in each
resource scenario. In this context, it is
notable that the PIGF+MAP-+metabo-
lites model delivered similar preterm
preeclampsia prediction to that of the
combination of biomarkers PIGF+MAP
+UTA-PI used in the FMF prediction
model.

Our research also indicates that bio-
markers can be combined to refine pre-
diction in maternal phenotypes with
low previous risks, such as women with
normal BMI, or high previous risks,
such as women identifying as Black.
This opens an avenue to address the
lack of prediction accuracy inherent to
the common checklist-based risk assess-
ments; for instance, the United States
Preventive Services Task Force guidance
will disregard women of normal BMI
and, at the same time, consider any
Black woman to be at moderate risk."”

Research implications

Taken together with other recent
research,””*>%" this study adds further
credence to the concept that subclassifi-
cation in obstetrical syndromes will be
critical to improving their understand-
ing and prediction.”” Currently, differ-
ential associations between maternal
characteristics and preeclampsia risk
are solely accounted for in previous risk
assessments. However, our research
indicates that after adjusting for con-
founding, new subsets of biomarkers
can be elicited by comparing cases and
controls in groups of women that differ
in maternal characteristics. Evaluation
of new biomarker candidates and
reevaluation of existing biomarkers in
function of risk-modifying maternal
characteristics, or other pregnancy
characteristics such as fetal sex,”°” may
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unlock further improvements to pre-
eclampsia prediction models.

In future research, we will: (1) inves-
tigate the most effective way to combine
the developed prediction models with
previous risk information, as contained
in maternal risk factors, so that the
added value of phenotypic prediction is
preserved when determining a patient’s
posttest probability of preterm pre-
eclampsia“; and (2) confirm conserva-
tion of prediction performance upon
conversion of the metabolite analyses
by research-grade assays into clinical
laboratory—grade liquid chromatogra-
phy—tandem mass spectrometry (LC
—MS/MS) assays.””*

With the primary aim of this research
being translational, it is explicitly build-
ing on the current best available set of
biomarkers for preterm preeclampsia.
We argue that incremental improve-
ments are an appropriate way to
shorten the time to clinical application.
By explicitly integrating the current
state of the art, it allows for effective
control of patient risk upon implemen-
tation. In view of the generalizability
and transportability of the developed
prediction models to other settings, the
combined use of multiplex analysis of
metabolite panels using LC—MS/MS
technology and the aggregation of
many models into a final prediction
model lends itself well to targeted
updating of the models to local set-
tings”’ and to regular updating in
response to population changes over

Strengths and limitations

Key strengths of this study include the
following: (1) the size of the study pop-
ulation, which allowed for creation of
patient strata with sufficient preterm
preeclampsia cases to generate pheno-
typic classifiers for aggregation into the
final prediction models; (2) the use of a
rigorous modeling methodology to limit
overfitting and overestimation of pre-
diction performance; and (3) the appli-
cation of translational research with a
singular focus on improving clinical
usability throughout. Among the limita-
tions of this study, we note the follow-
ing: (1) the possibility of a selection bias

in the metabolite biomarkers considered
given that most of these were identified
in biomarker discovery studies with
participants primarily identifying as
White and with BMI distributions cen-
tering around population averages; (2)
absence of phenotypic classifiers for
aggregation from patients of racial ori-
gins other than White or Black, or from
BMI classes such as the underweight
(BMI<18.5) or morbidly obese
(BMI>40); and (3) the use of ill-defined
maternal characteristics for defining
patient strata, which may have blunted
phenotypic prediction performances.

Conclusions

This study confirmed a panel of metab-
olite biomarkers that can effectively be
combined with the best currently avail-
able biomarkers for preterm preeclamp-
sia early in pregnancy, namely PIGF,
MAP, and UTA-P], to further improve
prediction. Three prediction models
were developed for 3 scenarios reflect-
ing different levels of screening resour-
ces available. Improvements over the
established biomarkers were in part
achieved by accounting for the existence
of different maternal risk profiles. This
allowed for the combination of specific
metabolites and established biomarkers
into classifiers with enhanced prediction
performance in certain patient strata
and the aggregation of such classifiers
into prediction models. [ |
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