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Abstract

Background—Preeclampsia is a leading cause of maternal and perinatal morbidity and 

mortality. However, current understanding of its underlying biological pathways remains limited.

Methods—In this study, we performed a cross-platform proteome- and transcriptome-wide 

genetic analysis aimed at evaluating the causal relevance of more than 2,000 circulating proteins 

with preeclampsia, supported by data on expression of over 15,000 genes across 36 tissue 

leveraging large-scale preeclampsia genetic association data from women of European ancestry.

Results—We demonstrate genetic associations of 18 circulating proteins with preeclampsia 

(SULT1A1, SH2B3, SERPINE2, RGS18, PZP, NOTUM, METAP1, MANEA, jun−D, GDF15, 

FGL1, FGF5, FES, APOBR, ANP, ALDH−E2, ADAMTS13, 3MG), among which 11 were 

either directly or indirectly supported by gene expression data, 9 were supported by Bayesian 

colocalization analyses, and 5 (SERPINE2, PZP, FGF5, FES and ANP) were supported by all lines 

of evidence examined. Protein interaction mapping identified potential shared biological pathways 

through natriuretic peptide signalling, blood pressure regulation, immune tolerance and thrombin 

activity regulation.

Conclusions—This investigation identified multiple targetable proteins linked to cardiovascular, 

inflammatory, and coagulation pathways, with SERPINE2, PZP, FGF5, FES and ANP identified as 

a pivotal proteins with likely causal roles in the development of preeclampsia. The identification of 

these potential targets may guide the development of targeted therapies for preeclampsia.
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Nonstandard Abbreviations and Acronyms

AMR Mendelian randomization

GWAS Genome wide association study

pQTL protein quantitative trait loci

eQTL expression quantitative trait loci

PPH1 posterior probability of hypothesis 1

PPH2 posterior probability of hypothesis 2

PPH3 posterior probability of hypothesis 3

PPH4 posterior probability of hypothesis 4

Introduction

Preeclampsia is a leading cause of maternal and perinatal morbidity and mortality. Current 

understanding of its underlying biological pathways remains limited. This is a great 

hindrance to the development of therapies which might prevent its development and 

downstream consequences on short- and long-term maternal and fetal health. To date, only a 

handful of drugs have been tested in randomized clinical trials to prevent preeclampsia, and 

only one therapy, aspirin, has demonstrated efficacy in high-risk women and been translated 

to clinical recommendations1.

Proteins play a key role in human biology and are the primary targets of most drug therapies. 

Understanding the causal relevance of proteins and their networks on diseases can aid 

drug development and repurposing by uncovering the key underlying biological processes, 

providing rationale for intervening on these proteins with drugs. This can streamline the 

discovery process and increase the efficiency of drug development.

Mendelian randomization (MR) is a genetic epidemiological method that leverages the 

natural randomness that is involved in the inheritance of many risk factors, to inform 

the causal relevance of these risk factors on a specific disease2. In the proteomic setting, 

the MR paradigm leverages the natural variability in genetic variants encoding proteins, 

which are potential drug targets, to explore the predicted effects of their perturbation. Since 

allocation of these genetic variants that determine circulating protein levels occurs randomly 

through the process of mating and allele assortment at conception, the method resembles 

randomisation in a clinical trial. In this way, it can be helpful in providing evidence to 

support causal relevance of a protein on a disease with less potential for issues relating to 

confounding and reverse causation. Additionally, it can help overcome the limitations of cell 

or mouse models that may not fully replicate human biological processes. It is therefore a 
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valuable tool in drug discovery: therapies targeting proteins that are supported by evidence 

from human genetic studies have been shown to have a greater efficacy in trials and are more 

likely to gain regulatory approval3.

In recent years, there has been an increase in large-scale profiling of the plasma proteome 

and transcriptome. This has led to the creation of extensive catalogues of genetic variants 

that influence protein levels and gene transcription across hundreds of tissues within the 

human body. Combining these two resources allows for in-depth exploration of biological 

pathways underlying diseases, allowing the examination of the gene expression and 

downstream proteomic signatures that might influence disease outcomes with a causal role4.

In this study, we performed a proteome-wide genetic analysis aimed at evaluating the 

causal relevance of more than 1,500 circulating proteins for risk of preeclampsia across two 

different proteomic platforms, and corroborated and extended these analyses with data on 

expression of over 15,000 genes across 36 tissue types.

Methods

This study uses publicly available GWAS summary data accessible via the cited sources 

summarized in Table 1. All included studies had gained ethical approval and participant 

consent according to individual protocols available at the referenced publications. The 

study design is summarised in Figure 1, The methods for this study can be found in the 

Supplementary Methods.5–9

Results

Proteome-wide Mendelian randomization

After instrument selection and harmonization with outcome association data, pQTLs were 

available for analysis of 1,593 of the 1,881 proteins with cis-pQTLs in deCODE, and 

1,991 of the 2,923 proteins in UK Biobank. There was no evidence of weak instruments, 

with all instruments exceeding the recommended F-statistic threshold of 10. All instrument 

F-statistics are presented in Supplementary Table 1.

Eighteen proteins had significant genetic associations with preeclampsia. Higher circulating 

levels of SULT1A1, SERPINE2, RGS18, NOTUM, ?????1, MANEA, FGL1, FES, APOBR, 

ANP, ADAMTS13 and 3MG were associated with lower risk of preeclampsia. Conversely, 

higher circulating levels of SH2B3, PZP, jun-D, GDF15, FGF5 and ALDH-E2 were 

associated with a greater risk of preeclampsia. The results are summarized in Figure 2, 

and presented in Supplementary Table 2 for deCODE and Supplementary Table 3 for 

UK Biobank. SERPINE2, PZP, and ADAMTS13 had available pQTLs and consistent 

associations with preeclampsia across both SOMAscan and Olink datasets.

Sensitivity analyses

Multiple sensitivity analyses were performed to address instrumental variable assumptions, 

the results of which are summarized in Table 2. Weighted median MR and MR-Egger 

were not possible for the primary pQTL instruments due to insufficient instruments at 
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genome-wide significance level. After relaxing selection criteria for instruments (p<5×10-6, 

r2<0.2) and using MR-RAPS, the main analysis was replicated for all proteins except 

for SULT1A1, NOTUM, MANEA, jun-D, GDF15 (in both deCODE and UK Biobank) 

and ALDH-E2. After relaxing selection criteria for instruments, MR-Egger and weighted 

median MR produced consistent results for APOBR, FES, FGF5 and SERPINE2. Sensitivity 

analyses for ALDH-E2, FGL1, GDF15, MANEA, NOTUM and SULT1A1 were suggestive 

of horizontal pleiotropy either through a significant MR-Egger intercept (after accounting 

for multiple testing), or through inconsistency of results when utilising both MR-Egger 

and weighted median MR methods compared to the main results. The results suggested 

potential directional pleiotropy for 3MG, ADAMTS14, METAP1, and SH2B3, as the results 

were consistent on weighted median MR but not on MR-Egger, or vice versa. The analyses 

could not be performed for ANP, PZP, RGS18 because no additional SNPs were found 

with the relaxed criteria. The full results are outlined in Supplementary Table 4. Next, we 

performed a reverse direction MR analysis of significant pQTLs, which did not highlight any 

evidence of reverse causation (Supplementary Table 5). Finally, we repeated the analyses 

with a different data source, Zheng et al.’s study, for pQTL instruments4. In this data source, 

instruments for only 5 of the 18 pQTLs significant on primary analysis were available 

for validation. The results remained consistent for SERPINE2, PZP and GDF15, but not 

MANEA or FGL1 (Supplementary Table 6).

Colocalization

Using Bayesian colocalization analyses, we evaluated the posterior probability of shared 

causal variants within protein coding regions for the potentially causal pQTL with 

preeclampsia. The results are presented in in Supplementary Table 7 and Supplementary 

Table 8 for deCODE and UK Biobank respectively.

In deCODE, results supported colocalization (PPH4 >80%) for SERPINE2 (99.7%), RGS18 

(95.2%), PZP (89.8%), METAP1 (92.1%), jun-D (98.1%), ANP (88.4%), and 3MG (90.4%). 

In UKB, colocalization was supported for SERPINE2 (99.4%), PZP (89.9%), FGF5 (99.7%) 

and FES (87.9%). The results are presented in Figure 3. In total, 9 of the prioritized proteins 

were supported by colocalization in one or both datasets.

Transcriptome-wide Mendelian randomization

In the transcriptome-wide MR, we evaluated the association of gene expression for 103,476 

gene/tissue combinations, spanning more than 15,000 genes across 36 different tissues with 

preeclampsia. Overall, 86 eQTLs displayed at least one association with preeclampsia in at 

least one tissue that was significant after adjustment for multiple comparisons. These are 

summarised in Supplementary Figure 1 and Supplementary Table 9.

Direct comparison with significant pQTL results

Comparing the eQTL results with those of the primary pQTL analysis, there was 

directionally consistent evidence corroborating the pQTL associations in at least one 

tissue for analysis for SULT1A1, SH2B3, SERPINE2, RGS18, FGF5, FES, ALDH-E2 

and 3MG. Among these, ALDH2, FES, MANEA, RGS18, SERPINE2 and SULT1A1 were 

corroborated using whole blood eQTLs. No tissue-specific eQTL data was available for PZP, 
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jun-D, FGL1, ANP and ADAMTS13. There was no evidence of a directionally consistent 

association for the remaining pQTLs. Genetically predicted expression of METAP1 in aortic 

and tibial arterial tissue was significantly associated with preeclampsia, with opposing 

direction of effect compared to that observed for pQTLs.

Comparison with closely interacting proteins

In addition to looking for eQTL data that directly supports the pQTL findings, we expanded 

the comparison to also evaluate consistency of associations of eQTLs of the proteins with 

closest interactions to the significant pQTLs in the main analysis. These were identified as 

proteins with a STRING interaction score of more than 0.90, with a maximum of 5 proteins 

included for each significant pQTL. A summary of the identified proteins and the evidence 

supporting their interaction is provided in Supplementary Table 10.

In these analyses, biologically consistent associations of interacting proteins were noted for 

ANP, FGF5, SERPINE2, SH2B3 and SULT1A1. For ANP, the clearance receptor NPR3 

eQTL was associated with preeclampsia in the opposite direction to the ANP pQTL, which 

is biologically consistent given its role in clearance of ANP, and a consistent association 

was found for NPR2 in the tibial artery. There were no additional findings for ADAMTS13, 

APOBR, FES, FGL1, GDF15, MANEA, METAP1, and RGS18, and no eQTLs relating 

to interacting proteins were available for 3MG and PZP. The results of the analyses are 

summarized in Figure 4.

Annotation

Protein function, interactions and druggability—The protein network displaying the 

50 top high-confidence interactions (interaction score >0.70) for all 18 proteins is displayed 

in Supplementary Figure 2. A number of common STRING clusters were identified among 

the proteins, including ‘Complement and coagulation cascades, and Protein-lipid complex’ 

(ADAMTS13, APOBR, PZP), ‘Wnt signaling pathway’ (NOTUM, ANP) and ‘Dissolution 

of Fibrin Clot’ (ADAMTS13, SERPINE2). Full functional annotation for all proteins is 

provided in Supplementary Table 11.

The results of the druggability evaluation for the significant pQTLs is presented in 

Supplementary Table 12. A total of 11 of the 18 proteins were classified as druggable 

(SERPINE2, PZP, NOTUM, METAP1, GDF15, FGL1, FGF5, ANP, ALDH-E2 and 

ADAMTS13). Among these, three are targets of currently available compounds (METAP1, 

ANP and ALDH-E2) of which none have safety data relating to pregnancy.

Phenome-wide scanning—The results of phenome-wide scanning for all significant 

pQTLs are shown in Supplementary Table 13. Among the 18 significant pQTLs, 10 had 

genome-wide significant associations with other traits. These included blood pressure and 

cardiovascular disease traits relating to coronary artery disease and heart failure (SH2B3, 

FGF5, FES, ANP, ALDH-E2), anthropometric traits relating to body mass index, size 

and adiposity (jun-D, GDF15, APOBR), blood cell traits (SH2B3, FGF5, jun-D, APOBR, 

ALDH-E2). Instruments for ADAMTS13 were only associated with ADAMTS13 levels in 

a separate study. FES was additionally associated with birth weight traits. Instruments for 
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SERPINE2 were specifically only associated with platelet traits, as well as PDGF-BB levels, 

a clinical marker for preeclampsia10.

Discussion

In this study, we aimed to leverage large-scale genetic data to elucidate potential biological 

pathways contributing to the development of preeclampsia. Overall, genetically-predicted 

circulating levels of 18 proteins were associated with preeclampsia (SULT1A1, SH2B3, 

SERPINE2, RGS18, PZP, NOTUM, METAP1, MANEA, jun−D, GDF15, FGL1, FGF5, 

FES, APOBR, ANP, ALDH−E2, ADAMTS13, 3MG). Among these, 11 were either directly 

or indirectly supported by gene expression data, and 9 were corroborated by colocalization 

analyses. Among the studied proteins, 5 were found to have consistent evidence of 

association and colocalization in all primary and sensitivity analysis (SERPINE2, PZP, 

FGF5, FES and ANP). Protein interaction mapping identified potential shared biological 

pathways through natriuretic peptide signalling, blood pressure regulation, immune 

tolerance and thrombin function.

In this study, lower genetically-predicted levels of SERPINE2 (i.e., serpin family E 

member 2), a serine protease that directly inhibits thrombin activity, was associated with 

preeclampsia. Though this association has not been identified before in observational 

research, the result was consistent across proteomic platforms, and was supported every 

sensitivity, eQTL and colocalization analysis. In addition, lower genetically-predicted levels 

of ADAMTS13, a disintegrin and metalloproteinase that modulates thrombin similarly to 

SERPINE2, were also associated with preeclampsia. Dysregulation of the thrombin pathway 

plays a well-recognised central role in the pathogenesis of thrombotic thrombocytopenic 

purpura (TTP), a thrombotic microangiopathy with phenotypic overlap with preeclampsia11. 

On the whole, these findings suggest deranged thrombin regulation as a key mechanism 

underlying the development of preeclampsia. This is consistent with the known clinical 

association between procoagulant conditions such as Factor V Leiden and preeclampsia 

risk12, with the pathological overlap of preeclampsia with thrombotic microangiopathies13, 

and with the greater thrombin levels that women with preeclampsia display compared to 

controls14.

The role of ANP in the maintenance of cardiovascular homeostasis, regulation of natriuresis, 

vascular remodelling, and its interaction with the renin-angiotensin-aldosterone pathway 

are well-described15–21. The role of ANP in the development of preeclampsia is less 

recognised but has been suggested in preclinical models. A previous study by Cui et 
al.22 demonstrated that pregnant mice lacking either ANP or corin (a cardiac protease 

that activates ANP, also known as ANP-converting enzyme) exhibited a preeclampsia 

phenotype. Observational studies have additionally demonstrated that low first trimester 

levels of the closely related NT-proBNP are associated with greater risk of hypertensive 

disorders of pregnancy23, a finding corroborated by a recent protein-based MR study24. In 

our study, lower genetically-predicted ANP levels were associated with preeclampsia. Then, 

when exploring the association of gene expression of ANP and its 5 strongest associated 

proteins with preeclampsia, we found that expression of NPR2, a receptor for both ANP 

and BNP, was associated with higher risk of preeclampsia, whereas greater expression 
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of NPR3, a clearance receptor for ANP, is associated with greater risk of preeclampsia. 

Finally, colocalization analyses supported that the genetic predisposition to lower ANP and 

preeclampsia are due to a shared causal variant. On the whole, the combination of these 

findings support a causal relevance of low pre-pregnancy ANP levels in the development of 

preeclampsia that warrants its further investigation as a potential therapeutic target.

In the analysis in the UK Biobank, a strong genetic association was found between FGF5 

(or fibroblast growth factor 5) and preeclampsia which was corroborated by colocalization. 

This was also corroborated by gene expression data, where renal cortex FGF5 expression 

was strongly associated with preeclampsia. FGF5 polymorphisms have been linked with 

preeclampsia in a Chinese population25 and the FGF5 locus has been consistently prioritised 

as potentially causal in multiple GWASs of preeclampsia5,26,27 as well as blood pressure 

traits28–31. Similarly, lower levels of FES, a protein regulating endothelial permeability and 

leukocyte transmigration, were associated with preeclampsia across all analyses, indicating 

that FES is the likely causal gene at the previously identified FURIN/FES locus5,32. 

Together with the additional association of SH2B3, another established blood pressure 

locus31,33–35, this result supports the hypothesis that at least one of the mechanisms 

predisposing to preeclampsia is through a shared pathway with hypertension. This is in 

line with the multitude of observational evidence linking pre-existing hypertension to 

preeclampsia risk, and conversely, preeclampsia with later life hypertension risk36. The 

present study extends these prior data by implicating renal physiology in preeclampsia risk 

and pinpointing an important role for FGF5.

The pathophysiological mechanism underpinning the associations of PZP with preeclampsia 

is unclear. Higher genetically-predicted levels of circulating maternal PZP were associated 

with higher risk of preeclampsia. PZP is a broad-spectrum immunosuppressive protein 

inhibits protease activity and stabilizes misfolded proteins, as well as modulating T helper 

cell response, through which it is thought to play a part in preventing rejection of the fetus 

during pregnancy37. Its relevance in the pathophysiology of preeclampsia is not well studied 

to date, with only one study so far describing lower expression of PZP in preeclamptic 

placentas38, an association which is opposite in direction to the findings of our study. This 

association suggests a potential importance of immune regulation and tolerance. Importantly, 

PZP has previously been highlighted as susceptibility loci in a previous GWAS study32. 

Overall, our study highlights a likely role of these two proteins in the development of 

preeclampsia that warrants further investigation.

In this study, we found that higher GDF15 (or growth/differentiation factor 15) protein 

levels were associated with preeclampsia. GDF15 is a protein that regulates food intake, 

energy expenditure and body weight in response to metabolic and toxin-induced stresses, 

and has been implicated as a key factor in the pathogenesis of hyperemesis gravidarum 

where high fetal protein levels are combined with maternal sensitivity to the hormone due 

to low intrinsic GDF15 levels39. In the setting of preeclampsia, higher GDF15 levels have 

been described prior to diagnosis of preeclampsia40, findings that were corroborated in a 

recent meta-analysis41. However, there was some inconsistency in sensitivity analyses in our 

study, and we were not able to corroborate this finding using gene expression data and in 
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colocalization analyses. For this reason, its role in preeclampsia remains unclear and remains 

an important target for future investigation.

This study has a number of key strengths. First, the analysis spans a large scale 

of cross-platform proteomic and transcriptomic data, which has not been previously 

leveraged to investigate the biological pathways underlying preeclampsia. This higher 

coverage compared to any previous study increases the likelihood of uncovering important 

related mechanisms. In addition to this, we utilised a careful and step-wise approach 

starting with cross-platform proteomic data, corroborating it with transcriptomic data and 

colocalization analyses, and linking the results through interaction networks. This provides a 

comprehensive overview of the results and utilises available tools to help understand how the 

results of the analyses relate to each other. The use of MR and colocalization analyses helps 

increase confidence in the causal relevance of explored proteins on preeclampsia, where 

the results of these both support it. This is an important advantage, as it avoids the issues 

of confounding and reverse causation that often limit causal inference in biomarker studies 

of preeclampsia. Finally, the cross-platform approach is an important strength. Current 

data regarding the sensitivity and specificity of available commercial multiplexed protein 

assays is has highlighted important shortcomings42. For this reason, when proteome-wide 

exploration analyses are carried out, validation with both alternative proteomic assays as 

well as gene expression data are crucial to lend reliability to the results and reassure against 

off-target results due to poor assay specificity.

Limitations

There are a number of limitations to discuss. First, despite using the largest-to-date studies 

available, protein and tissue-specific gene expression coverage in the data sources remain 

incomplete. For example, it can be noted that many of the proteins that have been 

observationally associated with preeclampsia (e.g., s-Flt1, PLGF, LEP, ENGL) were not 

available. In addition to this, no data were available for analysis of ANP in the replication 

analysis using Zheng et al.’s data43, and similarly, there were no instruments for gene 

expression of the ANP gene, NPPA, in any of the studied tissues. Similar to this, even when 

instruments were available, where a result was not replicated in the transcriptome-wide MR 

its eQTL data was sometimes only available in very few tissues (e.g., GDF15, available in 

only one tissue). For this reason, a non-significant result might simply be due to lack of 

instrument availability in the ‘correct’ tissue where expression might relate to preeclampsia. 

Relating to this point, we were unable to analyse eQTL data for placental tissue. This is 

because, since the placenta is fetal and not maternal tissue, it is representative of fetal gene 

expression and would therefore require corresponding gene-outcome association data for 

fetal variants with maternal preeclampsia risk; as opposed to the gene-outcome association 

data used in this study that reflects the influence maternal variants on maternal preeclampsia 

risk. Second, in order to avoid potential confounding by population stratification, we 

restricted the analysis to using only data derived from European ancestry populations. This 

might limit the generalisability of the findings to populations of other ancestries. Given the 

lower risk of preeclampsia in women of European ancestry compared to, for example, those 

of African ancestry, it is imperative for this investigation to be repeated in cohorts of other 

ancestries once sufficient data is available to do so. Finally, the reliability of MR results is 
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strongly dependent on meeting instrumental variable assumptions. We addressed these in the 

study design by restriction of ancestry, utilisation of cis-MR to reduce risk of pleiotropy, as 

well as multiple sensitivity analyses and corroboration using gene expression data as well as 

colocalization. Nevertheless, even where robust evidence of potential causal relevance was 

found, validation of results in interventional trials remains the gold standard and cannot be 

replaced by genetic studies.

Conclusion

In this study, we performed a proteome- and transcriptome-wide genetic analysis aimed at 

evaluating the causal relevance of thousands of circulating proteins with preeclampsia, and 

supporting this with data on expression of over 15,000 genes across 36 tissue types. Our 

investigation identified multiple targetable proteins linked to cardiovascular, inflammatory, 

and coagulation pathways, with SERPINE2, PZP, FGF5, FES and ANP identified as a 

pivotal proteins with likely causal roles in the development of preeclampsia. Future studies 

should focus on evaluating an epidemiological temporal association of these proteins in 

women before and during pregnancy to corroborate the link with preeclampsia, and if this is 

confirmed, evaluate the efficacy and safety of intervening in these pathways through animal 

models and human trials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Flowchart outlining project design and statistical analysis. pQTLs = protein quantitative trait 

loci, EUR = European
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Figure 2. 
Genetic associations of protein levels with preeclampsia, displaying all proteins associated 

with preeclampsia after correction for multiple testing in the main analysis. Grey fields 

indicate data was not available for analysis. PPH4 = Posterior probability of shared causal 

variant, PPH3 = Posterior probability of distinct causal variant. * = nominally significant 

(p<0.05) ** = p<0.001, *** = significant after Benjamini-Hochberg correction for multiple 

testing
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Figure 3. 
Bayesian colocalization analysis evaluating the posterior probability of a shared causal 

variants influencing protein levels and preeclampsia risk, and probability of colocalization 

versus non-colocalization conditional on there being a causal variant for both traits [PPH4/

(PPH3+PPH4)]. Grey fields indicate data was not available for analysis
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Figure 4. 
Genetic associations of gene expression levels with preeclampsia, limited to the proteins 

identified as significant on the proteome-wide analysis or their closest interacting proteins 

(maximum of 5 proteins, all with STRING interaction score >0.90). Grey fields indicate 

data was not available for analysis. * = nominally significant (p<0.05) ** = p<0.001, *** = 

significant after Benjamini-Hochberg correction for multiple testing
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Table 1
Details of data sources utilised in this study

Phenotype Data source Number of participants Data link

Preeclampsia Honigberg et al. (2023)5 16,349 cases / 595,135 controls https://doi.org/10.6084/
m9.figshare.22680904.v1

pQTLs

Ferkingstad et al. (2021)6

deCODE
35,559 https://www.decode.com/summarydata/

Sun et al. (2023)7

UK Biobank
34,557 https://www.synapse.org/#!

Synapse:syn53038826/tables/

eQTLs GTEx Analysis Release V88,9

(dbGaP Accession phs000424.v8.p2)
15,201 tissue samples from 838 
donors https://www.gtexportal.org/home/
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