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ABSTRACT

Objective To examine the contraction time and relax-
ation time of the right ventricle at 11–13 weeks’ gestation
in trisomy 21 and euploid fetuses by speckle tracking
ultrasound imaging.

Methods Measurement of fetal nuchal translucency (NT)
thickness, Doppler assessment for tricuspid regurgitation
and reversed A-wave in the ductus venosus (DV) and fetal
echocardiography were performed immediately before
chorionic villus sampling for fetal karyotyping at 11–13
weeks’ gestation. Digital videoclips of the four-chamber
view of the fetal heart were recorded and analyzed offline
using speckle tracking imaging software. The contraction
time, which is the time between the highest and lowest
peaks in the right ventricular area, and relaxation time,
which is the time between the lowest and the subsequent
highest area peak, were measured and expressed as a
percentage of the duration of the cardiac cycle. Values in
trisomy 21 and euploid fetuses were compared.

Results Mean contraction time and relaxation time in 119
euploid fetuses were 52.1% (95% CI, 51.6–52.8%) and
47.8% (95% CI, 47.2–48.4%), respectively. In 21 tri-
somy 21 fetuses, mean contraction time was significantly
higher (57.0% (95% CI, 55.2–58.9%); P < 0.01) and
relaxation time lower (42.9% (95% CI, 41.1–44.8%);
P < 0.01) than in euploid fetuses. Multiple regression ana-
lysis showed that significant contributions to contraction
time and relaxation time were provided by fetal karyo-
type, NT and tricuspid regurgitation, but not by reversed
A-wave in the DV or the presence of a cardiac defect.

Conclusion In first-trimester fetuses with trisomy 21 and
in euploid fetuses with increased NT and tricuspid regur-
gitation there is evidence of increased right ventricular
contraction time and shortening of the relaxation time.
Copyright  2013 ISUOG. Published by John Wiley &
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INTRODUCTION

Excessive nuchal fluid accumulation, tricuspid regurgita-
tion and reversed A-wave in the ductus venosus (DV) are
common sonographic findings in fetuses with cardiovascu-
lar compromise, and they can be found alone or in differ-
ent combinations in a variety of conditions, such as severe
fetal growth restriction, cardiac overload in the recipient
fetus of twin-to-twin transfusion syndrome (TTTS) and
fetal hydrops1–3. Extensive research has demonstrated
that the prevalence of these findings is substantially higher
in fetuses with trisomy 21 at 11–13 weeks’ gestation than
in euploid fetuses4,5. However, cardiac function in fetuses
with trisomy 21 in the first trimester has been examined in
very few studies, and these used pulsed-wave Doppler and
M-mode ultrasound to measure atrioventricular and arte-
rial blood flow velocities, cardiac output, stroke volume,
shortening fraction and cardiac times6–8.

Speckle tracking imaging is a relatively new ultrasound-
based technique that is able to detect myocardial wall
motion and to analyze several functional parameters, such
as segmental and global myocardial velocities, deforma-
tion (strain), deformation rate (strain rate), ejection frac-
tion and valve displacement9,10. Several studies have pro-
vided reference ranges for such measurements in normal
fetuses in the second and third trimesters of pregnancy,
and speckle tracking imaging was able to show differences
in cardiac function between donor and recipient fetuses
in TTTS and in fetuses with hypoplastic left heart11–15.

The aim of this study was to examine contraction and
relaxation times of the right ventricle at 11–13 weeks’
gestation in trisomy 21 and euploid fetuses by speckle
tracking ultrasound imaging.

METHODS

Fetal echocardiography was performed on all consecutive
patients attending our center over a 6-month period
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Figure 1 Ultrasound images of the four-chamber view of the fetal heart at 12 weeks’ gestation showing automatic tracing of endocardial
borders by vector velocity imaging software during different phases of the cardiac cycle.

for chorionic villus sampling (CVS), which was carried
out after risk assessment for chromosomal abnormalities
by evaluation of a combination of maternal age, fetal
nuchal translucency (NT) thickness, fetal heart rate and
maternal serum free β-human chorionic gonadotropin and
pregnancy-associated plasma protein-A16. In a minority
of cases, CVS was carried out at maternal request or
for genetic testing. Echocardiography was performed
by obstetricians with extensive experience in second-
trimester anomaly scanning and first-trimester ultrasound.

All examinations were carried out transabdominally
using a 9-MHz linear transducer (9L, Acuson Sequoia
512, Imagegate, Siemens, Erlangen, Germany). In each
case we aimed to demonstrate cardiac anatomy and to
assess blood flow in the DV and across the tricuspid
valve with the use of color and pulsed-wave Doppler
ultrasound, as previously described17.

In each case we recorded a videoclip showing the apical
four-chamber view of the heart, of a duration of three to
four cardiac cycles, during fetal quiescence. These clips
were used for offline review by a fetal cardiologist. The
magnification of the image was such that, in a transverse
section of the fetal chest, the heart occupied most of the
screen, with a frame rate of at least 30 frames/s. The
videoclips of the four-chamber view were analyzed offline
with the use of Vector Velocity Imaging (VVI) software
(VVI, syngo, US Workplace, Siemens Healthcare). The
heart rate was measured using a virtual M-mode algo-
rithm built into the software. Firstly, the video sequence
was played back in order to identify a frame with clear
delineation of the endocardial borders of the right ventri-
cle, which were manually traced starting and ending at the
atrioventricular valve plane and excluding the moderator
band from the tracing. Secondly, the tracking algorithm
was launched and the capacity of the software to fol-
low cardiac wall motion was visually verified throughout
the video sequence (Figure 1). When necessary, adjust-
ments to the original tracing were made and cases in
which a satisfactory endocardial tracking could not be
obtained after several attempts were classified as inade-
quate and excluded from data analysis. Following success-
ful myocardial motion tracking, average changes in the
area of the right ventricle over time were calculated by the
software. When the computer mouse is placed on the curve
that describes the changes in ventricular area, the software
returns the value of the area at that specific point in time.

This allows definition of the beginning of systole as the
point with the highest value in the area curve and that of
diastole as the point with the lowest value. Contraction
and relaxation times were measured by placing electronic
time bars between the highest and lowest area peaks in a
given cardiac cycle (Figure 2). Concordance between the
video frame showing the beginning and end of systole and
diastole and the area peaks calculated by the software
was verified on the videoclip in each case. Measurements
were performed by a single operator who was not aware
of cardiac and extracardiac findings or fetal karyotype.

Outcome data included fetal karyotype and transab-
dominal fetal echocardiography findings at 18–22 weeks.

Statistical analysis

The Mann–Whitney U-test was used to compare the
means of continuous measurements between different
groups. The Chi square and Fisher’s exact tests were
used to assess the differences in frequency distribution
of categorical variables. Linear regression analysis was
used to examine the relationship between cardiac times,
fetal heart rate and crown–rump length (CRL). The
measured NT was expressed as the difference from the
expected normal mean for gestation (delta value)18.
Multiple regression analysis was used to determine which
of the factors among fetal karyotype, delta NT thickness,
tricuspid regurgitation, reversed A-wave in the DV and
the presence of a cardiac defect were significant predictors
of contraction and relaxation times. Bland–Altman
analysis was used to compare the agreement and bias
for measurement of contraction and relaxation times for
a single examiner and between two examiners19. The
data were analyzed using the statistical software SPSS
18.0 (Chicago, IL, USA) and Excel for Windows 2003
(Microsoft Corp., Redmond, WA, USA), with statistical
significance defined as P < 0.05.

RESULTS

During the study period we carried out 219 ultrasound
examinations. We excluded 16 cases with chromosomal
abnormalities other than trisomy 21 (Figure 3). Satis-
factory tracing and tracking of right ventricular wall
motion was achieved in 140 (69.0%) of the remaining
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Figure 2 (a) Output image from vector velocity imaging software showing variation in area of right ventricle with time (vertical dashed lines
define contraction and relaxation times). (b,c) Concordance between highest and lowest area peaks calculated by software and video frames
corresponding to end diastole (b) and end systole (c).

203 fetuses. Failure to obtain satisfactory results was the
consequence of low frame rate, inadequate visualization
of the endocardial borders of the right ventricle or fetal
movement. In the study population of 140 cases, median
maternal age was 35 (range, 19–46) years, median mater-
nal body mass index was 23.9 (range, 18–32) kg/m2 and
median fetal CRL was 71.4 (range, 52–84) mm. There
were 119 euploid fetuses and 21 cases of trisomy 21. In
the trisomy 21 fetuses NT thickness and the prevalence
of tricuspid regurgitation, reversed A-wave in the DV
and cardiac defects were higher than in euploid fetuses,
but there was no significant difference in CRL and fetal
heart rate (Table 1). There was no significant difference
in CRL, fetal heart rate and the prevalence of tricuspid
regurgitation, reversed A-wave in the DV and cardiac
defects between cases in which a satisfactory endocardial
tracking was obtained and those in which the VVI
software was not able to accurately follow cardiac wall
motion, both in euploid and trisomy 21 fetuses (Table 1).

Regression analysis showed that contraction and
relaxation times significantly decreased with increasing
fetal heart rate (r = 0.503, P < 0.01, and r = 0.611,
P < 0.01, respectively). Therefore, we expressed the
values as a percentage of the cardiac cycle duration,
derived by the sum of contraction and relaxation times
in the same cycle. There was no significant change
in contraction time/cardiac cycle duration (CT%) and
relaxation time/cardiac cycle duration (RT%) with fetal
heart rate (r = 0.135, P = 0.112 and r = 0.134, P = 0.114,
respectively).

Mean CT% and RT% in the euploid fetuses were
52.1% (95% CI, 51.6–52.8%) and 47.8% (95% CI,
47.2–48.4%), respectively. In the trisomy 21 fetuses
mean CT% was significantly higher (57.0% (95% CI,

55.2–58.9%), P < 0.01) and RT% lower (42.9% (95%
CI, 41.1–44.8%), P < 0.01) than in euploid fetuses.
Multiple regression analysis showed that significant
contributions to CT% and RT% were given by fetal
karyotype, delta NT thickness and tricuspid regurgitation
but not by reversed A-wave in the DV or the presence of
a cardiac defect (Table 2, Figure 4).

In order to verify the reliability of the VVI software in
defining the duration of right ventricular contraction and
relaxation, we compared the duration of the cardiac cycle
calculated by the VVI software with that derived from the
fetal heart rate calculated with conventional pulsed-wave
Doppler on two consecutive cardiac cycles (cardiac cycle
in ms = 60/fetal heart rate in beats per min × 1000).
Paired samples t-test showed no significant difference
in cardiac cycle length between the two methodologies
(P = 0.142). The mean frame rate was 49 (range, 36–54)
frames/s. There was no significant difference in frame
rate between euploid fetuses and fetuses with trisomy
21 (P = 0.974).

The mean difference and the 95% limits of agreement
between paired measurements of contraction time by the
same observer were 0.740 (range, –8.860 to 10.340) ms
and the values in paired measurements by two different
observers were 1.120 (range, –14.199 to 16.439) ms
(Figure 5). The values for measurements of relaxation
time by the same observer were 0.120 (range, –9.281
to 9.521) ms and by two different observers they were
–0.700 (range, –14.973 to 13.573) ms (Figure 6).

DISCUSSION

This study showed that first, in euploid fetuses at 11–13
weeks’ gestation, about half of the cardiac cycle is
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Fetuses examined by 
ultrasound 
(n = 219) Cases excluded because other 

chromosomal defect present (n = 16): 
     Trisomy 18 (n = 5) 
     Trisomy 13 (n = 1) 
     Turner syndrome (n = 1) 
     Triploidy (n = 3) 
     Other (n = 6)Cases available for 

vector velocity 
imaging tracking 

(n = 203)

Unsuccessful vector 
velocity imaging tracking 

(n = 63)

Successful vector velocity 
imaging tracking 

(n = 140)

Figure 3 Flow-chart of study population of all consecutive patients attending our center over a 6-month period for chorionic villus sampling
(n = 219).

Table 1 Main sonographic findings in euploid and trisomy 21 fetuses according to successful or unsuccessful vector velocity imaging (VVI)
myocardial tracking

Successful VVI tracking Unsuccessful VVI tracking

Parameter
Euploid

(n = 119)
Trisomy 21

(n = 21) P
Euploid
(n = 59) P*

Trisomy 21
(n = 4) P†

Crown–rump length (mm) 71.4 (52–84) 71.1 (54–84) 0.791 69.9 (54–84) 0.201 69.2 (60–76) 0.630
Fetal heart rate (beats per min) 158 (140–188) 157 (138–166) 0.997 158 (100–178) 0.822 161 (157–166) 0.237
NT thickness (mm) 2.6 (1.3–9.8) 4.4 (2.0–7.6) < 0.01 2.5 (1.4–6.7) 0.447 6.8 (3.2–12.1) 0.532
Tricuspid regurgitation 25 (21.0) 16 (76.2) < 0.01 7 (11.9) 0.152 3 (75.0) 1.000
Reversed A-wave in DV 10 (8.4) 6 (28.6) < 0.01 6 (10.2) 1.000 1 (25.0) 1.000
Cardiac defect 3 (2.5) 11 (52.4) < 0.01 1 (1.7) 1.000 1 (25.0) 0.593

Atrioventricular septal defect 1 8 — 1 — 1 —
Ebstein’s anomaly 1 — — — — — —
Disproportion of ventricles

and great arteries
1‡ 3 — — — — —

Data given as n, n (%) or mean (range). *Comparison with euploid fetuses with successful VVI tracking. †Comparison with trisomy 21
fetuses with successful VVI tracking. ‡Coarctation of the aorta on follow-up scans. DV, ductus venosus; NT nuchal translucency.

Table 2 Multiple regression analysis showing the contribution of
different factors to contraction and relaxation times expressed as a
percentage of the cardiac cycle

Independent
variable

Contraction
time

coefficient P

Relaxation
time

coefficient P

Karyotype 2.387 < 0.01 −2.375 < 0.01
Delta NT 0.594 < 0.01 −0.595 < 0.01
TR 2.450 < 0.01 −2.467 < 0.01
Reversed A-wave in DV 1.092 0.217 −1.088 0.220
Cardiac defect −0.443 0.695 0.452 0.689

DV, ductus venosus; NT nuchal translucency; TR, tricuspid
regurgitation.

occupied by contraction and the other half by relaxation
of the right ventricle; second, in fetuses with trisomy 21
there is an increase in duration of ventricular contraction
and shortening of relaxation time; and third, in both
euploid and trisomy fetuses contraction and relaxation
times are related to NT thickness and presence or absence
of tricuspid regurgitation.

In the adult, with a heart rate of about 75 beats per
minute (bpm), two thirds of the cardiac cycle is spent in
ventricular relaxation20. Induced tachycardia to 150 bpm
is associated with shortening of the relaxation time to
half of the cycle20. This is consistent with our findings
in early fetal life, when the heart rate is about 150 bpm.
Similarly, in normal neonates and children an increase
in heart rate is mainly achieved through shortening of the
relaxation time21.

Echocardiographic studies have shown that an increase
in the ratio between systolic and diastolic times is a
common finding in neonates and children with car-
diac functional disorders, such as dilated and restrictive
cardiomyopathy22,23. Consequently, our finding that in
fetuses with trisomy 21 and in those with high NT and tri-
cuspid regurgitation there is prolongation of contraction
time and shortening of relaxation time could indicate the
presence of cardiac dysfunction. There is evidence that,
in postnatal life, trisomy 21 is associated with cardiac
dysfunction24–28, and a recent echocardiographic study
found mild to moderate regurgitation in one or more heart
valves in 106 (76.8%) of 138 adults with trisomy 2129.

Copyright  2013 ISUOG. Published by John Wiley & Sons Ltd. Ultrasound Obstet Gynecol 2013.
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Figure 4 Relationship of contraction time (a) and relaxation time (b) with nuchal translucency thickness in euploid fetuses (filled circles) and
trisomy 21 fetuses (open circles) according to absence (black circles) or presence (red circles) of tricuspid regurgitation.
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Figure 5 Mean difference and 95% limits of agreement between paired measurements of contraction time as measured by vector velocity
imaging by the same observer (a) and by two different observers (b).

Our findings are compatible with the results of animal
studies. Gui et al.30 measured cardiac time intervals using
pulsed-wave Doppler in 20 mouse embryos with trisomy
16, which has been shown to be a good animal model for
human trisomy 21 and is also associated with increased
NT31,32, and found that the ejection time, which accounts
for most of the duration of ventricular contraction,
was significantly longer than that in 129 normal mouse
embryos.

Two previous first-trimester studies of human fetuses
with trisomy 21 have examined cardiac time intervals
using pulsed-wave Doppler measurement of the myocar-
dial performance index (MPI), which is the sum of

isovolumic contraction and relaxation times divided by
the ejection time for each ventricle6,7. Although both stud-
ies found that in trisomy 21 right ventricular MPI was
not significantly different from that of euploid fetuses,
one study found that left MPI was increased but the other
found that it was decreased6,7. One possible explana-
tion for these discordant results is that, in both studies,
measurement of MPI was subject to wide intra- and inter-
observer variation. The ability of the VVI software to
accurately analyze cardiac function depends strongly on
the frame rate of the videoclip recording33. In this study,
a mean rate of about 50 frames/s allowed clear sepa-
ration of systole from diastole, but it was insufficient

Copyright  2013 ISUOG. Published by John Wiley & Sons Ltd. Ultrasound Obstet Gynecol 2013.
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Figure 6 Mean difference and 95% limits of agreement between paired measurements of relaxation time as measured by vector velocity
imaging by the same observer (a) and by two different observers (b).

for a systematic detection of ventricular isovolumic times,
which have a short duration and therefore require a higher
number of frames/s.

The reliability of the VVI software in quantifying
cardiac cycle length was verified in this study by showing
no significant difference between it and the duration of the
cardiac cycle calculated by pulsed-wave Doppler, which
is known to reflect true fetal heart rate variations. In
addition, the simultaneous display of the graph showing
changes in the ventricular area during the cardiac cycle and
the corresponding frame on the video sequence allowed
verification of the ability of the algorithm to identify
the beginning and end of systole and diastole. However,
despite the use of high-frequency linear ultrasound, which
provides detailed visualization of the fetal heart in the
first trimester of pregnancy17, the VVI software was not
able to effectively track endocardial wall motion in about
30% of cases, mainly because of signal noise and fetal
movement. For this reason, assessment of cardiac function
by VVI in fetuses at 11–13 weeks’ gestation is unlikely
to be incorporated into routine screening, but it could be
used to observe changes in cardiac functional parameters
in selected populations for a better understanding of fetal
cardiac pathophysiology.
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