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ABSTRACT

Objective To review clinical validation or implementa-
tion studies of maternal blood cell-free (cf) DNA analysis
and define the performance of screening for fetal trisomies
21, 18 and 13 and sex chromosome aneuploidies.

Methods Searches of PubMed, EMBASE and The
Cochrane Library were performed to identify all
peer-reviewed articles on cfDNA testing in screening for
aneuploidies between January 2011, when the first such
study was published, and 4 January 2015.

Results In total, 37 relevant studies were identified and
these were used for the meta-analysis on the perfor-
mance of cfDNA testing in screening for aneuploidies.
These studies reported cfDNA results in relation to
fetal karyotype from invasive testing or clinical outcome.
Weighted pooled detection rates (DR) and false-positive
rates (FPR) in singleton pregnancies were 99.2% (95% CI,
98.5–99.6%) and 0.09% (95% CI, 0.05–0.14%), respec-
tively, for trisomy 21, 96.3% (95% CI, 94.3–97.9%) and
0.13% (95% CI, 0.07–0.20) for trisomy 18, 91.0% (95%
CI, 85.0–95.6%) and 0.13% (95% CI, 0.05–0.26%)
for trisomy 13, 90.3% (95% CI, 85.7–94.2%) and
0.23% (95% CI, 0.14–0.34%) for monosomy X and
93.0% (95% CI, 85.8–97.8%) and 0.14% (95% CI,
0.06–0.24%) for sex chromosome aneuploidies other
than monosomy X. For twin pregnancies, the DR for
trisomy 21 was 93.7% (95% CI, 83.6–99.2%) and the
FPR was 0.23% (95% CI, 0.00–0.92%).

Conclusion Screening for trisomy 21 by analysis of
cfDNA in maternal blood is superior to that of all other
traditional methods of screening, with higher DR and
lower FPR. The performance of screening for trisomies 18
and 13 and sex chromosome aneuploidies is considerably
worse than that for trisomy 21. Copyright © 2015
ISUOG. Published by John Wiley & Sons Ltd.
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INTRODUCTION

Several studies in the last 4 years have reported the clinical
validation and/or implementation of analyzing cell-free
(cf) DNA in maternal blood in screening for trisomies
21, 18 and 13 and sex chromosome aneuploidies.
In a previous meta-analysis1, we reported the results
from studies published between January 2011 and 20
December 2013. The objective of this meta-analysis was
to update the results, with inclusion of studies that were
published up to 4 January 2015.

METHODS

Literature search and study selection

Searches of PubMed, EMBASE and The Cochrane Library
were performed, with a restriction to English-language
publications, to identify all peer-reviewed articles pub-
lished on clinical validation or implementation of mater-
nal cfDNA testing in screening for aneuploidies. The
search period was from January 2011, when the first
such study was published2, to 4 January 2015. A list
of relevant citations was generated from these databases
using the following search terms: ‘maternal blood cfDNA’,
‘non-invasive prenatal detection’, ‘noninvasive prenatal
diagnosis’ or ‘non invasive prenatal diagnosis’.

The abstracts of citations were examined by two
reviewers (M.M.G., R.R.) to identify all potentially
relevant articles, which were then examined in full-text
form. Reference lists of relevant original and review
articles were searched for additional reports. Agreement
about potential relevance was reached by consensus and
by consultation with a third reviewer (K.H.N.).

The inclusion criteria were peer-reviewed study report-
ing on clinical validation or implementation of maternal
cfDNA testing in screening for aneuploidies, in which
data on pregnancy outcome were provided for more than
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Records identified
(n = 2820)

Records screened
(n = 1399)

Duplicates
(n = 1421)

Articles included
(n = 37)

Conference abstracts
(n = 447)

Review/opinion articles
(n = 89)

Outcome in < 85% of cases
(n = 14)

Non-relevant articles
(n = 788)

Proof-of-principle articles
(n = 24)

Figure 1 Flowchart summarizing selection of studies for inclusion in the systematic review.

85% of the study population. Studies in which the labo-
ratory scientists carrying out the tests were aware of fetal
karyotype or pregnancy outcome were excluded.

Data extraction and meta-analysis of data from all
studies

Data regarding sample size, gestational age at analysis,
method used for cfDNA testing and detection (DR) and
false-positive (FPR) rates for non-mosaic trisomies 21,18
and 13 and sex chromosome aneuploidies were obtained
from each study included in the systematic review and
documented in contingency tables. In the construction of
these tables, we used the results from the cfDNA test and
excluded those cases in which the test failed to give a
result. In the calculation of FPR we included all euploid
and aneuploid cases other than the aneuploidy under
investigation. In tables in which there was a zero in any
cell, Haldane correction was used, which added 0.5 to
each count in the table to allow for estimation of variance
and pooled effects.

Meta-analysis of extracted data was carried out in two
steps: first, summary statistics with 95% CIs were derived
for each study and, second, individual study statistics were
combined to obtain a pooled summary estimate, which
was calculated as a weighted average of the individual
study estimates. The pooled summary statistics were
estimated using both fixed-effects (inverse variance) and
random-effects (DerSimonian-Laird) models.

Assessment of quality, heterogeneity between studies
and estimation of bias were carried out as described
previously1.

The statistical software package StatsDirect version
2.7.9 (StatsDirect Ltd, Cheshire, UK) was used for data
analysis.

RESULTS

Data sources

The search identified 1399 potentially relevant citations
(Figure 1). The following groups were excluded: confer-
ence abstracts rather than peer-reviewed papers (n = 447),
non-relevant publications (n = 788), review articles or
opinions (n = 89), proof-of-principle studies reporting
laboratory techniques, rather than clinical validation of
a predefined method of maternal blood cfDNA analysis
(n = 24)3–26 and studies on clinical implementation of
cfDNA testing in screening for aneuploidies in which
pregnancy outcome data were provided for fewer than
85% of the study population27–40 (n = 14). One study
had been included in our previous meta-analysis1, but, on
further assessment for this analysis, it has been reclassified
as a proof-of-principle study, as acknowledged by the
authors12.

In total, 37 relevant studies were identified2,41–76

and these were used for the meta-analysis on the per-
formance of cfDNA testing in screening for aneuploi-
dies. These studies reported cfDNA results in relation
to fetal karyotype from invasive testing or clinical
outcome.

In three of the 37 studies, some of the maternal
blood samples for the cfDNA analysis were obtained
after the invasive test54,63,71. In 27 studies, it was stated
explicitly2,41–47,49–52,55–59,61,62,65,68–70,72–74,76 and in
two it was assumed on the basis of the described
methodology64,75 that, if an invasive test was carried out,
the samples for cfDNA analysis were obtained before the
invasive test. In five studies, it was uncertain if invasive
testing was performed before or after maternal blood
sampling for the cfDNA test48,53,60,66,67.
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Figure 2 Summary of the quality of included studies on trisomies (a) and sex chromosome aneuploidies (b) using the Quality Assessment
tool for Diagnostic Accuracy Studies (QUADAS-2) checklist.

Methodological quality of the selected studies

The methodological quality of the selected studies,
assessed by the Quality Assessment tool for Diagnostic
Accuracy Studies (QUADAS-2)77, is illustrated in Figure 2.
This tool comprises four domains; each one is assessed in
terms of risk of bias and the first three are also assessed
in terms of concerns regarding applicability. The studies
were assessed separately for the trisomies and the sex
chromosome aneuploidies.

Risk of bias

The first domain relates to patient selection. A study
was considered to be at low risk of bias if the cfDNA
test was carried out in a consecutive or random sample
of patients and any exclusions were appropriate; case–
control studies were considered to be at high risk of bias.
The following studies were classified as being at high
risk of bias either because the samples were not stated
explicitly to have been consecutive or selected at ran-
dom2,41,42,44,48,49,51,53,56–61,63–66,68,69,71–73,75 or because
a case–control design was used43,45–47,52,54,55,67,70. Only
four studies were classified as being at low risk of
bias50,62,74,76.

The second domain relates to the index test. A study was
considered to be at low risk of bias if the cfDNA test was
carried out and the results given by the laboratory without
prior knowledge of the fetal karyotype or pregnancy
outcome. The risk of bias was considered to be low in
all papers that stated explicitly that the cfDNA test was
performed without prior knowledge of fetal karyotype or

outcome. In four studies this was assumed to be the case,
but, because it was not stated in the paper, we recorded a
high risk of bias2,48,60,68.

The third domain relates to the reference standard.
A study was considered to be at low risk of bias if
the method of diagnosing the chromosomal abnormality
under investigation was able to give the correct answer.
For trisomies 21, 18 and 13, we accepted this to
be true if the diagnosis was based on prenatal or
postnatal karyotyping, in the case of affected fetuses,
or on karyotyping or examination of the neonate, in
the case of unaffected fetuses. The risk of bias was also
considered to be low for most studies on sex chromosome
aneuploidies because the karyotype was ascertained from
invasive testing; however, in four studies, the risk of
bias was considered to be high because the assumption
of normal karyotype was based on clinical examination
at birth rather than on karyotyping61,64,73,76. Unlike the
situation with trisomies 21, 18 and 13, neonates with
sex chromosome aneuploidies are often phenotypically
normal. Consequently, studies that do not involve
karyotyping of the whole population will inevitably
underestimate the true prevalence of these abnormalities
and overestimate the potential sensitivity of a prenatal
screening test.

The fourth domain relates to flow and timing. A study
was considered to be at low risk of bias if, firstly, in the
calculation of performance of screening, all patients in
the study population had a result from the cfDNA test
and pregnancy outcome and, secondly, if the method
of classifying the outcome result (invasive testing or
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clinical examination) was the same in all cases in the
study population. Only six studies fulfilled the above
two conditions and were classified as being at low risk
of bias2,49,55,56,66,69. All other studies were classified as
being at high risk of bias because cfDNA testing was not
carried out or did not provide results in all cases and/or
there was no complete follow-up and/or the method of
determining outcome was not the same in all cases.

Concerns regarding applicability

In the context of screening for fetal aneuploidies by
cfDNA analysis of maternal blood, there would be
concern regarding applicability to screening in the general
population if the test in the studies included in the
meta-analysis was carried out in pregnancies identified
as being at high risk for aneuploidies by prior screening
with another method.

In terms of the first domain on patient selection,
only the five studies that were performed in a general
population were classified as being at low risk of concerns
regarding applicability50,61,63,64,75. In terms of the second
domain, on index test, all studies classified as being at
low risk of bias were also considered to be at low risk
of concerns regarding applicability; there were only four
papers classified as being at high risk2,48,60,68. Similarly,
for the third domain on reference standard, all studies
reporting on trisomies 21, 18 or 13 were classified as
being at low risk of concerns regarding applicability;
those reporting on sex chromosome aneuploidies without
karyotyping of all cases in the study population were
classified as being at high risk of concerns regarding
applicability61,64,73,76.

Method of analyzing samples

The studies included in the meta-analysis used one of three
methods for analysis of cfDNA in maternal blood: mas-
sively parallel shotgun sequencing (technique described in
references78,79), chromosome-selective sequence analysis
(technique described in references9,53) or single nucleotide
polymorphism-only-based analysis (technique described
in references12,80). Other methods of examining fetopla-
cental nucleic acids in maternal blood have been investi-
gated, but these have not yet been implemented in clinical
practice.

Nature of the studies

Most of the studies included in the meta-analysis were
retrospective, using stored samples from pregnancies
with known outcome45,54,55,60,65,66,68,70, or prospective,
using mainly samples from high-risk pregnancies undergo-
ing invasive testing42–44,46–49,51–53,56–59,62,67,69,71–74,76;
two were both2,41.

Only five of the studies reported on the clinical
implementation of cfDNA testing in routine screening for
trisomies in the general population50,61,63,64,75. The first50

examined stored plasma samples from 2049 singleton

pregnancies that underwent combined screening at 11–13
weeks’ gestation and had known pregnancy outcome.
Results were obtained from cfDNA testing in 1949
(95.1%) pregnancies and all 10 cases of trisomy 21 or 18
were correctly identified, with a FPR of 0.1%

In the second study61, cfDNA testing was performed
prospectively in 1916 singleton pregnancies at a median
gestational age of 16 (range, 11–21) weeks. The test did
not provide a result in 3.8% of cases and there was loss
to follow-up in 5.8% of cases. Of the 1741 pregnancies
with cfDNA results and outcome data, the test correctly
identified all 11 cases of trisomy 21, 18 or 13, with a FPR
of 0.06%.

In the third study63, cfDNA testing was performed
prospectively in 2042 singleton pregnancies at 17 (range,
8–39) weeks. The test did not provide a result in 0.9% of
cases and there was loss to follow-up in 3.5% of cases. Of
the 1952 pregnancies with cfDNA results and outcome
data, the test correctly identified all seven cases of trisomy
21 or 18, with a FPR of 0.5%.

In the fourth study64, cfDNA testing was performed
prospectively in 333 singleton pregnancies at 14 (range,
9–23) weeks. The test did not provide a result in 1.2% of
cases and there was no follow-up in 5.5% of cases. Of the
315 pregnancies with cfDNA results and outcome data,
the test correctly identified all four cases of trisomy 21,
with a FPR of 0.0%.

In the fifth study75, cfDNA testing was performed
prospectively in 2905 singleton pregnancies at 11–13
weeks. The test did not provide a result in 1.9% of cases
and there was loss to follow-up in 2.3% of cases. Of
the 2785 pregnancies with cfDNA results and outcome
data, the test correctly identified all 32 cases with trisomy
21, nine of 10 with trisomy 18 and two of five with
trisomy 13, with FPRs of 0.04%, 0.19% and 0.07%,
respectively.

No-result rate from cfDNA testing

One issue with cfDNA testing as a method of screening
for aneuploidies is failure to provide a result. There are
essentially three reasons for such failure: first, problems
with blood collection and transportation of the samples
to the laboratory, including inadequate blood volume,
hemolysis, incorrect labeling of tubes and delay in arrival
to the laboratory; second, low fetal fraction (usually
below 4%); and third, assay failure for a variety of
reasons, including failed DNA extraction, amplification
or sequencing.

Data on the no-result rate from the studies included in
the meta-analysis are summarized in Table 1. Data relating
to blood collection and transportation of the samples were
provided by 11 of the studies and the reported rates ranged
from 0.03% to 11.1%. Data on failure to obtain results
for samples that were analyzed were provided by 35 of
the studies and the reported rates ranged from 0.0% to
12.2%. In 11 of these 35 studies, further details were
given, with the reason for failure being low fetal fraction
and the reported rates ranged from 0.5% to 6.1%.
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Table 1 Failure to obtain a result from cell-free DNA analysis of maternal blood in screening for trisomies (T) 21, 18 and 13 and sex
chromosome aneuploidies (SCA)

Laboratory failure (n (%))

Study Method
GA

(weeks) Aneuploidy
Inadequate

sample (n (%)) Total
Low FF
(< 4%)

Assay
failure

Laboratory failure not reported
Singleton pregnancy

Shaw (2013)73 MPSS > 12 T21, T18,
T13, SCA

Twin pregnancy
Canick (2012)47 MPSS 14 (10–18) T21, T13

No data on low FF as reason for laboratory failure
Singleton pregnancy

Chen (2011)2 MPSS — T18, T13 0/289 (0.0)
Chiu (2011)41 MPSS 13 (—) T21 46/810 (5.7) 11/764 (1.4)
Sehnert (2011)44 MPSS 15 (10–28) T21, T18 1/47 (2.1)

SCA 1/47 (2.1)
Ashoor (2012)45 CSS 12 (11–13) T21, T18 25/425 (5.9) 3/400 (0.8)
Jiang (2012)48 MPSS — (10–34) T21, T18, T13 0/903 (0.0)

SCA 1/903 (0.1)
Lau (2012)49 MPSS 12 (11–28) T21, T18,

T13, SCA
0/108 (0.0)

Palomaki (2012)52 MPSS 14 (9–22) T21, T18, T13 17/1988 (0.9)
Sparks (2012)53 CSS 18 (11–36) T21, T18 8/338 (2.4)
Ashoor (2013)54 CSS 12 (11–13) T13 62/2167 (2.9)
Guex (2013)55 MPSS 12 (11–13) T21, T18,

T13, SCA
0/276 (0.0)

Liang (2013)57 MPSS 21 (11–39) T21, T18,
T13, SCA

12/435 (2.8)

Mazloom (2013)58 MPSS — (10–20) SCA 116/1975 (5.9)
Nicolaides (2013)59 SNP 13 (11–13) T21, T18,

T13, SCA
13/242 (5.4)

Samango-Sprouse (2013)60 SNP 13 (9–36) SCA 14/201 (7.0)
Song (2013)61 MPSS 16 (11–21) T21, T18,

T13, SCA
73/1916 (3.8)

Bianchi (2014)63 MPSS 17 (8–39) T21, T18, T13 8/2050 (0.4) 18/2042 (0.9)
Comas (2014)64 CSS/

SNP
14 (9–23) T21, T18,

T13, SCA
4/333 (1.2)

Hooks (2014)68 CSS 15 (10–34) SCA 18/432 (4.2)
Porreco (2014)72 MPSS 17 (9–37) T21, T18, T13 464/4170 (11.1) 324/3700 (8.8)

X analysis 372/3700 (10.1)
Y analysis 452/3700 (12.2)

Stumm (2014)74 MPSS 15 (11–32) T21, T18, T13 32/504 (6.3)
Song (2015)76 MPSS 9 (8–12) T21, T18,

T13, SCA
1/213 (0.5) 0/212 (0.0)

Twin pregnancy
Lau (2013)56 MPSS 13 (11–20) T21 0/12 (0.0)
Grömminger (2014)66 MPSS 15 (10–18) T21 0/56 (0.0)
Huang (2014)69 MPSS 19 (11–36) T21, T18 0/189 (0.0)

Details given on reason for laboratory failure
Singleton pregnancy

Ehrich (2011)42 MPSS 16 (8–36) T21 13/480 (2.7) 18/467 (3.9) 7/467 (1.5) 11/467 (2.4)
Palomaki (2011)43 MPSS 15 (8–21) T21 13/1696 (0.8) 9/1696 (0.5) 4/1696 (0.2)
Bianchi (2012)46 MPSS 15 (10–23) T21, T18, T13 2/534 (0.4) 30/532 (5.6) 16/532 (3.0) 14/532 (2.6)

SCA 65/532 (12.2) 16/532 (3.0) 49/532 (9.2)
Nicolaides (2012)50 CSS 12 (11–13) T21, T18 100/2149 (4.7) 100/2049 (4.9) 46/2049 (2.2) 54/2049 (2.6)
Norton (2012)51 CSS 16 (10–38) T21, T18 104/4002 (2.6) 148/3228 (4.6) 57/3228 (1.8) 91/3228 (2.8)
Verweij (2013)62 CSS 14 (10–28) T21 30/595 (5.0) 16/520 (3.1) 7/520 (1.3) 9/520 (1.7)
Hall (2014)67 SNP 16 (12–22) T13 4/68 (5.9) 4/68 (5.9)
Nicolaides (2014)70 CSS 12 (11–13) SCA 5/177 (2.8) 4/177 (2.3) 1/177 (0.6)
Pergament (2014)71 SNP 14 (7–40) T21, T18,

T13, SCA
85/1051 (8.1) 64/1051 (6.1) 21/1051 (2.0)

Quezada (2015)75 CSS 10 (10–11) T21, T18, T13 1/2905 (0.03) 53/2905 (1.8) 38/2905 (1.3) 15/2905 (0.52)
Twin pregnancy

del Mar Gil (2014)65 CSS 13 (12–13) T21, T18, T13 15/207 (7.2) 11/207 (5.3) 4/207 (1.9)

Only the first author of each study is given. Gestational age (GA) is given as median (range) unless otherwise indicated. CSS, chromosome-
specific sequencing; FF, fetal fraction; MPSS, massively parallel shotgun sequencing; SNP, single nucleotide polymorphism-based method.
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On the basis of the published data, it is not possible
to offer an explanation for the wide range in failure rates
between studies or to draw conclusions on the possible
relationship between the no-result rate and the method
used for the analysis of samples or gestational age at
sampling. However, findings from the four studies that
reported the no-result rate separately for trisomies and
sex chromosome aneuploidies44,46,48,72 suggest that the
rate for the latter is increased; the rate was 6.9% (355
of 5182) for trisomies and 17.2% (891 of 5182) for sex
chromosome aneuploidies (P < 0.0001).

Meta-analysis and performance of screening
for aneuploidies

The DR and FPR for each study, weighted pooled data
and heterogeneity between studies (Cochran’s Q and I2

statistic) are provided in Tables 2–7 and illustrated in
Figures 4–9. The publication bias of the studies is also
given in Tables 2–7 (Egger’s bias value) and assessed
graphically using funnel plots in Figure 3.

Trisomy 21

A total of 24 studies reported on the performance of
screening by cfDNA analysis for trisomy 21, in a combined

total of 1051 trisomy-21 and 21 608 non-trisomy-21 sin-
gleton pregnancies (Table 2). Among individual studies,
the DR varied between 94.4% and 100% and the FPR
varied between 0% and 2.05%. The pooled weighted
DR and FPR were 99.2% (95% CI, 98.5–99.6%) and
0.09% (95% CI, 0.05–0.14%), respectively.

Trisomy 18

A total of 21 studies reported on the performance of
screening by cfDNA analysis for trisomy 18, in a combined
total of 389 trisomy-18 and 21 306 non-trisomy-18
singleton pregnancies (Table 3). In individual studies, the
DR varied between 90.0% and 100% and the FPR varied
between 0% and 1.98%. The pooled weighted DR and
FPR were 96.3% (95% CI, 94.3–97.9%) and 0.13%
(95% CI, 0.07–0.20), respectively.

Trisomy 13

A total of 18 studies reported on the performance of
screening by cfDNA analysis for trisomy 13, in a combined
total of 139 trisomy-13 and 18 059 non-trisomy-13
singleton pregnancies (Table 4). In individual studies, the
DR varied between 40.0% and 100% and the FPR varied
between 0% and 1.14%. The pooled weighted DR and

Table 2 Studies reporting on the application of cell-free DNA analysis of maternal blood in screening for trisomy 21 in singleton pregnancy

Trisomy 21 Non-trisomy 21

Study Method GA (weeks) Total (n)
Detection

(n (%, 95% CI)) Total (n)
False positive

(n (%, 95% CI))

Chiu (2011)41 MPSS 13 (—) 86 86 (100, 95.8–100) 146 3 (2.05, 0.43–5.89)
Ehrich (2011)42 MPSS 16 (8–36) 39 39 (100, 91.0–100) 410 1 (0.24, 0.01–1.35)
Palomaki (2011)43 MPSS 15 (8–21) 212 209 (98.6, 95.9–99.7) 1471 3 (0.20, 0.04–0.60)
Sehnert (2011)44 MPSS 15 (10–28) 13 13 (100, 75.3–100) 34 0 (0.00, 0.00–10.28)
Ashoor (2012)45 CSS 12 (11–13) 50 50 (100, 92.9–100) 347 0 (0.00, 0.00–1.06)
Bianchi (2012)46 MPSS 15 (10–23) 89 89 (100, 95.9–100) 404 0 (0.00, 0.00–0.91)
Jiang (2012)48 MPSS — (10–34) 16 16 (100, 79.4–100) 887 0 (0.00, 0.00–0.42)
Lau (2012)49 MPSS 12 (11–28) 11 11 (100, 71.5–100) 97 0 (0.00, 0.00–3.73)
Nicolaides (2012)50 CSS 12 (11–13) 8 8 (100, 63.1–100) 1941 0 (0.00, 0.00–0.19)
Norton (2012)51 CSS 16 (10–38) 81 81 (100, 95.6–100) 2888 1 (0.04, 0.00–0.19)
Sparks (2012)53 CSS 18 (11–36) 36 36 (100, 90.3–100) 131 0 (0.00, 0.00–2.78)
Guex (2013)55 MPSS 12 (11–13) 30 30 (100, 88.4–100) 146 0 (0.00, 0.00–2.50)
Liang (2013)57 MPSS 21 (11–39) 39 39 (100, 91.0–100) 367 0 (0.00, 0.00–1.00)
Nicolaides (2013)59 SNP 13 (11–13) 25 25 (100, 86.3–100) 204 0 (0.00, 0.00–1.79)
Song (2013)61 MPSS 16 (11–21) 8 8 (100, 63.1–100) 1733 0 (0.00, 0.00–0.21)
Verweij (2013)62 CSS 14 (10–28) 18 17 (94.4, 72.7–99.9) 486 0 (0.00, 0.00–0.76)
Bianchi (2014)63 MPSS 17 (8–39) 5 5 (100, 47.8–100) 1947 6 (0.31, 0.11–0.67)
Comas (2014)64 CSS/SNP 14 (9–23) 4 4 (100, 39.8–100) 311 0 (0.00, 0.00–1.18)
Pergament (2014)71 SNP 14 (7–40) 58 58 (100, 93.8–100) 905 0 (0.00, 0.00–0.41)
Porreco (2014)72 MPSS 17 (9–37) 137 137 (100, 97.3–100) 3185 3 (0.09, 0.02–0.28)
Shaw (2014)73 MPSS > 12 11 11 (100, 71.5–100) 184 0 (0.00, 0.00–1.98)
Stumm (2014)74 MPSS 15 (11–32) 41 40 (97.6, 87.2–99.9) 430 0 (0.00, 0.00–0.85)
Quezada (2015)75 CSS 10 (10–11) 32 32 (100, 89.1–100) 2753 1 (0.04, 0.00–0.20)
Song (2015)76 MPSS 9 (8–12) 2 2 (100, 15.8–100) 201 0 (0.00, 0.00–1.82)

Pooled analysis (% (95% CI))
Fixed effects model 99.2 (98.5–99.6) 0.09 (0.05–0.13)
Random effects model 99.2 (98.5–99.6) 0.09 (0.05–0.14)

Cochran’s Q 10.7230 (P = 0.9858) 27.2044 (P = 0.2474)
I2 statistic (% (95% CI)) 0.0 (0.0–39.6) 15.5 (0.0–48.6)
Egger bias −0.0512 (P = 0.6525) 0.2367 (P = 0.2270)

Only the first author of each study is given. CSS, chromosome-specific sequencing; GA, gestational age; MPSS, massively parallel shotgun
sequencing; SNP, single nucleotide polymorphism-based method.
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Table 3 Studies reporting on the application of cell-free DNA analysis of maternal blood in screening for trisomy 18 in singleton pregnancy

Trisomy 18 Non-trisomy 18

Study Method GA (weeks) Total (n)
Detection

(n (%, 95% CI)) Total (n)
False positive

(n (%, 95% CI))

Chen (2011)2 MPSS — 37 34 (91.9, 78.1–98.3) 252 5 (1.98, 0.65–4.57)
Sehnert (2011)44 MPSS 15 (10–28) 8 8 (100, 63.1–100) 39 0 (0.00, 0.00–9.03)
Ashoor (2012)45 CSS 12 (11–13) 50 49 (98.0, 89.4–99.9) 347 0 (0.00, 0.00–1.06)
Bianchi (2012)46 MPSS 15 (10–23) 36 35 (97.2, 85.5–99.9) 460 0 (0.00, 0.00–0.80)
Jiang (2012)48 MPSS — (10–34) 12 12 (100, 73.5–100) 891 1 (0.11, 0.00–0.62)
Lau (2012)49 MPSS 12 (11–28) 10 10 (100, 69.2–100) 98 0 (0.00, 0.00–3.69)
Nicolaides (2012)50 CSS 12 (11–13) 2 2 (100, 15.8–100) 1947 2 (0.10, 0.01–0.37)
Norton (2012)51 CSS 16 (10–38) 38 37 (97.4, 86.2–99.9) 2888 2 (0.07, 0.01–0.25)
Palomaki (2012)52 MPSS 14 (9–22) 59 59 (100, 93.9–100) 1912 5 (0.26, 0.09–0.61)
Sparks (2012)53 CSS 18 (11–36) 8 8 (100, 63.1–100) 159 0 (0.00, 0.00–2.29)
Guex (2013)55 MPSS 12 (11–13) 20 19 (95.0, 75.1–99.9) 156 0 (0.00, 0.00–2.34)
Liang (2013)57 MPSS 21 (11–39) 13 13 (100, 75.3–100) 393 0 (0.00, 0.00–0.93)
Nicolaides (2013)59 SNP 13 (11–13) 3 3 (100, 29.2–100) 226 0 (0.00, 0.00–1.62)
Song (2013)61 MPSS 16 (11–21) 2 2 (100, 15.8–100) 1739 1 (0.06, 0.00–0.32)
Bianchi (2013)63 MPSS 17 (8–39) 2 2 (100, 15.8–100) 1950 3 (0.15, 0.03–0.45)
Pergament (2014)71 SNP 14 (7–40) 24 24 (100, 85.8–100) 938 0 (0.00, 0.00–0.39)
Porreco (2014)72 MPSS 17 (9–37) 39 36 (92.3, 79.1–98.4) 3283 0 (0.00, 0.00–0.11)
Shaw (2014)73 MPSS > 12 7 7 (100, 59.0–100) 188 0 (0.00, 0.00–1.94)
Stumm (2014)74 MPSS 15 (11–32) 8 8 (100, 63.1–100) 463 1 (0.22, 0.01–1.20)
Quezada (2015)75 CSS 10 (10–11) 10 9 (90.0, 55.5–99.8) 2775 5 (0.18, 0.06–0.42)
Song (2015)76 MPSS 9 (8–12) 1 1 (100, 2.50–100) 202 0 (0.00, 0.00–1.81)

Pooled analysis (% (95% CI))
Fixed effects model 96.3 (94.3–97.9) 0.12 (0.08–0.17)
Random effects model 96.3 (94.3–97.9) 0.13 (0.07–0.20)

Cochran’s Q 11.9512 (P = 0.9177) 29.7620 (P = 0.0738)
I2 statistic (% (95% CI)) 0.0 (0.0–41.5) 2.8 (0–59.5)
Egger bias −0.2031 (P = 0.2831) 0.4687 (P = 0.0513)

Only the first author of each study is given. CSS, chromosome-specific sequencing; GA, gestational age; MPSS, massively parallel shotgun
sequencing; SNP, single nucleotide polymorphism-based method.

FPR were 91.0% (95% CI, 85.0–95.6%) and 0.13%
(95% CI, 0.05–0.26%), respectively.

Monosomy X

A total of 16 studies reported on the detection of
monosomy X by cfDNA analysis, for a combined total
of 177 singleton pregnancies with fetal monosomy X
and 9079 with no monosomy X (Table 5). In individual
studies, the DR varied between 66.7% and 100% and the
FPR varied between 0% and 0.52%. The pooled weighted
DR and FPR were 90.3% (95% CI, 85.7–94.2%) and
0.23% (95% CI, 0.14–0.34%), respectively.

Sex chromosome aneuploidies other than monosomy X

A total of 12 studies reported on the performance of
screening by cfDNA analysis for sex chromosome abnor-
malities other than monosomy X, in a combined total of
56 affected and 6699 non-sex chromosome aneuploidy
singleton pregnancies (Table 6). The pooled weighted DR
and FPR were 93.0% (95% CI, 85.8–97.8%) and 0.14%
(95% CI, 0.06–0.24%), respectively.

Studies in twin pregnancies

Five studies reported on the performance of screening
by cfDNA analysis for trisomies in twin pregnancies

(Table 7). In a combined total of 31 trisomy-21
and 399 euploid pregnancies, the DR was 93.7%
(95% CI, 83.6–99.2%) and the FPR was 0.23%
(95% CI, 0.00–0.92%). There were also nine trisomy-18
pregnancies and two trisomy-13 pregnancies and these
were all classified correctly47,65,69.

Comparison with traditional methods of screening
in routine populations

Four studies compared the performance of screen-
ing for trisomies by cfDNA testing with that of
traditional methods of screening50,61,63,75. The first
study50 examined stored plasma samples from single-
ton pregnancies that underwent combined screening
at 11–13 weeks’ gestation. In the 1949 cases with
both cfDNA and combined test results, all 10 tri-
somic pregnancies were detected by both tests, with a
FPR of 0.1% for the cfDNA test and 4.5% for the
combined test.

In the second study61, cfDNA testing and
second-trimester triple serum screening were per-
formed prospectively at a median gestational age of 16
(range, 11–21) weeks. In the 1741 pregnancies with
cfDNA results and outcome data, the test correctly
identified all 11 trisomic pregnancies, with a FPR of
0.06%; the triple test identified only 6 (54.5%) of the
trisomies, with a FPR of 14.1%.

Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd. Ultrasound Obstet Gynecol 2015; 45: 249–266.



256 Gil et al.

Table 4 Studies reporting on the application of cell-free DNA analysis of maternal blood in screening for trisomy 13 in singleton pregnancy

Trisomy 13 Non-trisomy 13

Study Method GA (weeks) Total (n)
Detection

(n (%, 95% CI)) Total (n)
False positive

(n (%, 95% CI))

Chen (2011)2 MPSS — 25 25 (100, 86.3–100) 264 3 (1.14, 0.24–3.29)
Bianchi (2012)46 MPSS 15 (10–23) 14 11 (78.6, 49.2–95.3) 485 0 (0.00, 0.00–0.76)
Jiang (2012)48 MPSS — (10–34) 2 2 (100, 15.8–100) 901 0 (0.00, 0.00–0.41)
Lau (2012)49 MPSS 12 (11–28) 2 2 (100, 15.8–100) 106 0 (0.00, 0.00–3.42)
Palomaki (2012)52 MPSS 14 (9–22) 12 11 (91.7, 61.5–99.8) 1959 16 (0.82, 0.47–1.32)
Ashoor (2013)54 CSS 13 (11–26) 10 8 (80.0, 44.4–97.5) 1949 1 (0.05, 0.00–0.29)
Guex (2013)55 MPSS 12 (11–13) 13 13 (100, 75.3–100) 163 0 (0.00, 0.00–2.24)
Liang (2013)57 MPSS 21 (11–39) 3 3 (100, 29.2–100) 403 1 (0.25, 0.01–1.38)
Nicolaides (2013)59 SNP 13 (11–13) 1 1 (100, 2.5–100) 228 0 (0.00, 0.00–1.61)
Song (2013)61 MPSS 16 (11–21) 1 1 (100, 2.5–100) 1740 0 (0.00, 0.00–0.21)
Bianchi (2013)63 MPSS 17 (8–39) 1 1 (100, 2.5–100) 1913 3 (0.16, 0.03–0.46)
Hall (2014)67* SNP 16 (12–22) 14 14 (100, 76.8–100) 49 0 (0.00, 0.00–7.25)
Pergament (2014)71 SNP 14 (7–40) 11 11 (100, 71.5–100) 953 0 (0.00, 0.00–0.39)
Porreco (2014)72 MPSS 17 (9–37) 16 14 (87.5, 61.7–98.5) 3306 0 (0.00, 0.00–0.11)
Shaw (2014)73 MPSS > 12 3 3 (100, 29.2–100) 192 0 (0.00, 0.00–1.90)
Stumm (2014)74 MPSS 15 (11–32) 5 5 (100, 47.8–100) 466 0 (0.00, 0.00–0.79)
Quezada (2015)75 CSS 10 (10–11) 5 2 (40.0, 52.8–85.3) 2780 2 (0.07, 0.01–0.26)
Song (2015)76 MPSS 9 (8–12) 1 1 (100, 2.5–100) 202 0 (0.00, 0.00–1.81)

Pooled analysis (% (95% CI))
Fixed effects model 91.7 (86.9–95.5) 0.11 (0.06–0.16)
Random effects model 91.0 (85.0–95.6) 0.13 (0.05–0.26)

Cochran’s Q 21.6858 (P = 0.1971) 50.2813 (P < 0.0001)
I2 statistic (% (95% CI)) 21.6 (0.0–55.3) 66.2 (38.7–78.2)
Egger bias −0.6143 (P = 0.1104) 0.5732 (P = 0.0907)

Only the first author of each study is given. *Hall reports 15 cases but one case is from Nicolaides 2013. CSS, chromosome-specific
sequencing; GA, gestational age; MPSS, massively parallel shotgun sequencing; SNP, single nucleotide polymorphism-based method.

In the third study63, prospective screening by cfDNA
testing at 17 (range, 8–39) gestational weeks and a
variety of traditional tests (first-trimester combined test
in 39%, second-trimester serum quadruple test in 23%
and combinations of the first- and second-trimester tests
in 38%) were performed. In the 1914 pregnancies with
outcome data, both tests correctly identified all eight
trisomic pregnancies, with a FPR of 0.5% for the cfDNA
test and 4.2% for the traditional tests.

In the fourth study75, prospective screening by cfDNA
testing was performed at 10–11 weeks’ gestation and
by the combined test at 11–13 weeks. In the 2785
pregnancies with cfDNA results and outcome data, the
test correctly identified all 32 cases with trisomy 21, nine
of 10 with trisomy 18 and two of five with trisomy
13, with a total FPR of 0.3%. The combined test
correctly identified all trisomic pregnancies, with a FPR
of 4.4%.

DISCUSSION

Performance of screening for aneuploidies

Screening for trisomy 21

In singleton pregnancies, cfDNA analysis of maternal
blood can detect more than 99% of cases of fetal trisomy
21 with a FPR of less than 0.1%. The combined total
number of affected (n = 1051) and unaffected (n = 21 608)

pregnancies was large and the heterogeneity between
studies was low.

Although most studies were in high-risk pregnancies,
there were five studies with a combined total of 57
affected and 8685 unaffected pregnancies in general
populations50,61,63,64,75, with a DR of 100% and a FPR
of 0.08%. In two of the latter studies50,75, the cfDNA test
was compared with the first-trimester combined test in
a combined total of 40 trisomy-21 and 4694 unaffected
pregnancies, with DRs of 100% for both tests but a
FPR of 0.02% for the cfDNA test and 4.4% for the
combined test. In another study61, at a median gestational
age of 16 weeks, the cfDNA test detected all cases of
trisomy 21, 18 or 13, with a FPR of 0.06%, whereas the
second-trimester serum triple test detected only 55% of
the trisomies, with a FPR of 14.1%. In a fourth study63,
at 8–39 weeks, both the cfDNA test and a range of first-
and/or second-trimester traditional tests detected all cases
of trisomy 21, with a FPR of 0.3% for the cfDNA test
and 3.6% for the traditional tests.

Screening for trisomies 18 and 13

The performance of cfDNA analysis of maternal blood
in the identification of singleton pregnancies with fetal
trisomy 18 or 13, with respective DRs of about 96% and
91% and a combined FPR of 0.26%, is worse than is the
performance of screening for trisomy 21. The objective of
trying to identify all three trisomies, rather than trisomy
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Table 5 Studies reporting on the application of cell-free DNA analysis of maternal blood in screening for monosomy X in singleton
pregnancy

Monosomy X Non-monosomy X

Study Method GA (weeks) Total (n)
Detection

(n (%, 95% CI)) Total (n)
False positive

(n (%, 95% CI))

Sehnert (2011)44 MPSS 15 (10–28) 2 2 (100, 15.8–100) 45 0 (0.00, 0.00–7.87)
Bianchi (2012)46 MPSS 15 (10–23) 20 15 (75.0, 50.9–91.3) 462 1 (0.22, 0.01–1.20)
Jiang (2012)48 MPSS — (10–34) 3 3 (100, 29.2–100) 899 1 (0.11, 0.00–0.62)
Lau (2012)49 MPSS 12 (11–28) 8 8 (100, 63.1–100) 100 0 (0.00, 0.00–3.62)
Guex (2013)55 MPSS 12 (11–13) 15 15 (100, 78.2–100) 161 0 (0.00, 0.00–2.27)
Liang (2013)57 MPSS 21 (11–39) 5 5 (100, 47.8–100) 401 1 (0.25, 0.01–1.38)
Mazloom (2013)58 MPSS — (10–20) 21 17 (81.0, 58.1–94.6) 390 1 (0.26, 0.01–1.42)
Nicolaides (2013)59 SNP 13 (11–13) 2 2 (100, 15.8–100) 227 0 (0.00, 0.00–1.61)
Samango-Sprouse (2013)60 SNP 13 (9–36) 12 11 (91.7, 61.5–99.8) 175 0 (0.00, 0.00–2.09)
Song (2013)61 MPSS 16 (11–21) 3 2 (66.7, 9.4–99.2) 1737 0 (0.00, 0.00–0.21)
Comas (2014)64 CSS/SNP 14 (9–23) 0 — 315 1 (0.32, 0.01–1.76)
Hooks (2014)68 CSS 15 (10–34) 27 26 (96.3, 81.0–99.9) 387 2 (0.52, 0.06–1.85)
Nicolaides (2014)70 CSS 12 (11–13) 47 43 (91.5, 79.6–97.6) 116 0 (0.00, 0.00–3.13)
Porreco (2014)72 MPSS 17 (9–37) 9 9 (100, 66.4–100) 3269 11 (0.34, 0.17–0.60)
Shaw (2014)73 MPSS > 12 3 3 (100, 29.2–100) 192 0 (0.00, 0.00–1.90)
Song (2015)76 MPSS 9 (8–12) 0 — 203 1 (0.49, 0.01–2.71)

Pooled analysis (% (95% CI))
Fixed effects model 90.3 (85.8–94.1) 0.23 (0.14–0.34)
Random effects model 90.3 (85.7–94.2) 0.23 (0.14–0.34)

Cochran’s Q 13.2419 (P = 0.4293) 15.2823 (P = 0.4313)
I2 statistic (% (95% CI)) 1.8 (0.0–48.4) 1.8 (0.0–46.4)
Egger bias −0.2358 (P = 0.6481) 0.3781 (P = 0.1668)

Only the first author of each study is given. CSS, chromosome-specific sequencing; GA, gestational age; MPSS, massively parallel shotgun
sequencing; SNP, single nucleotide polymorphism-based method.

Table 6 Studies reporting on the application of cell-free DNA analysis of maternal blood in screening for sex chromosome abnormalities
(SCA) other than monosomy X in singleton pregnancy

47,XXX; 47,XXY; 47,XYY Non-SCA

Study Method GA (weeks) Total (n)
Detection

(n (%, 95% CI)) Total (n)
False positive

(n (%, 95% CI))

Bianchi (2012)46 MPSS 15 (10–23) 9 8 (88.9, 51.8–99.7) 453 0 (0.00, 0.00–0.81)
Jiang (2012)48 MPSS — (10–34) 3 3 (100, 29.2–100) 896 0 (0.00, 0.00–0.41)
Lau (2012)49 MPSS 12 (11–28) 1 1 (100, 2.5–100) 99 0 (0.00, 0.00–3.66)
Guex (2013)55 MPSS 12 (11–13) 5 5 (100, 47.8–100) 156 0 (0.00, 0.00–2.34)
Liang (2013)57 MPSS 21 (11–39) 3 3 (100, 29.2–100) 398 1 (0.25, 0.01–1.39)
Mazloom (2013)58 MPSS — (10–20) 8 8 (100, 63.1–100) 382 0 (0.00, 0.00–0.96)
Samango-Sprouse (2013)60 SNP 13 (9–36) 3 3 (100, 29.2–100) 172 0 (0.00, 0.00–2.12)
Hooks (2014)68 CSS 15 (10–34) 7 7 (100, 59.0–100) 380 0 (0.00, 0.00–0.97)
Nicolaides (2014)70 CSS 12 (11–13) 9 9 (100, 66.4–100) 107 1 (0.94, 0.02–5.10)
Porreco (2014)72 MPSS 17 (9–37) 6 6 (100, 54.1–100) 3263 5 (0.15, 0.05–0.36)
Shaw (2014)73 MPSS > 12 1 1 (100, 2.5–100) 191 0 (0.00, 0.00–1.91)
Song (2015)76 MPSS 9 (8–12) 1 0 (0.0, 0.0–97.5) 202 0 (0.00, 0.00–1.81)

Pooled analysis (% (95% CI))
Fixed effects model 93.0 (85.8–97.8) 0.14 (0.06–0.24)
Random effects model 93.0 (85.8–97.8) 0.14 (0.06–0.24)

Cochran’s Q 8.7823 (P = 0.6420) 6.1030 (P = 0.8664)
I2 statistic (% (95% CI)) 0.0 (0.0–49.8) 0.0 (0.0–49.8)
Egger bias −1.4222 (P = 0.1776) −0.1007 (P = 0.6579)

Only the first author of each study is given. All monosomy-X pregnancies have been excluded from these data. CSS, chromosome-specific
sequencing; GA, gestational age; MPSS, massively parallel shotgun sequencing; SNP, single nucleotide polymorphism-based method.

21 alone, is achieved at the expense of a four-fold increase
in the FPR, from 0.09% to 0.35%. Furthermore, the
number of affected cases examined, 389 for trisomy 18
and 139 for trisomy 13, was considerably smaller than
that for trisomy 21, and the heterogeneity in DR and FPR
between studies was much higher for trisomy 13 than for
the other two trisomies.

Screening for sex chromosome aneuploidies

A small number of studies, with a combined total of 177
singleton pregnancies with fetal monosomy X and 56
with other sex chromosome aneuploidies, reported that
cfDNA analysis of maternal blood detected about 90% of
the former and 93% of the latter, with a combined FPR
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Table 7 Studies reporting on the application of cell-free DNA analysis of maternal blood in screening for trisomy 21 in twin pregnancy

Trisomy 21 Non-trisomy 21

Study Method GA (weeks) Total (n)
Detection

(n (%, 95% CI)) Total (n)
False positive

(n (%, 95% CI))

Canick (2012)47 MPSS 14 (10–18) 7 7 (100, 59.0–100) 17 0 (0.0, 0.0–19.5)
Lau (2013)56 MPSS 13 (11–20) 1 1 (100, 2.5–100) 11 0 (0.0, 0.0–28.5)
del Mar Gil (2014)65 CSS 13 (12–13) 10 9 (90.0, 55.5–99.7) 181 0 (0.0, 0.0–2.0)
Grömminger (2014)66 MPSS 15 (10–18) 4 4 (100, 39.8–100) 12 0 (0.0, 0.0–26.5)
Huang (2014)69 MPSS 19 (11–36) 9 9 (100, 66.4–100) 178 0 (0.0, 0.0–2.1)

Pooled analysis (% (95% CI))
Fixed effects model 93.7 (83.6–99.2) 0.23 (0.00–0.92)
Random effects model 93.7 (83.6–99.2) 0.23 (0.00–0.92)

Cochran’s Q 1.3097 (P = 0.8597) 1.4391 (P = 0.8374)
I2 statistic (% (95% CI)) 0.0 (0.0–64.1) 0.0 (0.0–64.1)
Egger bias −0.0239 (P = 0.0833) —

Only the first author of each study is given. CSS, chromosome-specific sequencing; GA, gestational age; MPSS, massively parallel shotgun
sequencing.
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Figure 3 Funnel plots demonstrating assessment of publication bias in screening for trisomies 21 (a), 18 (b) and 13 (c). Top panel gives
results for detection rate and bottom one for false-positive rate.

of 0.37%. Certainly in some studies the rate of laboratory
failure to provide a result was considerably higher
for sex chromosome aneuploidies than it was for the
trisomies.

Screening for aneuploidies in twin pregnancies

In twin pregnancies, while screening by cfDNA testing
is feasible, the performance of screening may be worse
than it is in singletons. In twins, cfDNA testing is
more complex, because the two fetuses could be either
monozygotic, and therefore genetically identical, or
dizygotic, in which case only one fetus is likely to have any

aneuploidy identified. There is evidence that, in dizygotic
twins, each fetus can contribute different amounts of
cfDNA into the maternal circulation, and the difference
can be nearly two-fold16,81. It is therefore possible, in a
dizygotic twin pregnancy discordant for aneuploidy, for
the fetal fraction of the affected fetus to be below the
threshold (4%) for successful cfDNA testing. This could
lead to an erroneous result of low risk for aneuploidy, with
a high contribution from the disomic cotwin resulting in
a satisfactory total fetal fraction. To avoid this potential
mistake, it was proposed that for cfDNA testing in twin
pregnancies, the lower fetal fraction of the two fetuses,
rather than the total fetal fraction, should be estimated
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study is given.

in the assessment of risk for aneuploidies82. However,
an inevitable consequence of such a policy is that the
no-result rate in twins is higher than that in singleton
pregnancies39.

Methodological quality of the studies in the
meta-analysis

In the assessment of methodological quality by
QUADAS-277, most studies were considered to be at
high risk of bias and at high risk of concerns regarding
applicability in relation to patient selection. This is essen-
tially because most studies were performed in selected
populations. However, the ability to detect aneuploidy
with cfDNA analysis is dependent upon assay precision
and fetal DNA percentage in the sample, rather than the
prevalence of the disease in the study population45,50. This
is supported by the finding that the performance of the
test in the five studies that were carried out in a general
population50,61,63,64,75 was similar to that of studies in
high-risk pregnancies.

Most studies were also classified as being at high risk
of bias in relation to flow and timing. This is essentially
because cfDNA testing did not provide results in all
cases, there was no complete follow-up, or the method

of determining outcome was not the same in all cases.
However, such criticisms could be applied to any clinical
study; all methods of traditional screening occasionally
fail to give a result and no screening study in pregnancy
can have complete follow-up, especially because some
women miscarry and karyotyping is not performed. The
real issue in relation to the failure rate in cfDNA testing is
whether this is higher in aneuploid compared with euploid
fetuses. A common cause of failure of the test to provide a
result is low fetal fraction. The fetal fraction increases with
increasing serum pregnancy-associated plasma protein-A
and free β-human chorionic gonadotropin and is inversely
related to maternal weight; the levels are not significantly
altered in pregnancies with fetal trisomy 21 but they
are reduced in those with trisomy 1883,84. It is therefore
expected that, in trisomies 18 and 13, the failure rate of the
cfDNA test would be increased, thereby introducing bias
if only the cases with results are included in the calculation
of the performance of screening. One study has reported
that the rate of failed results was considerably higher in
aneuploid than in euploid pregnancies71.

In the context of the method of determining outcome,
most screening studies inevitably rely on karyotyping
for diagnosis of trisomies 21, 18 and 13 and on
clinical examination of the neonate for exclusion of these
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trisomies. The risk of bias in these cases is low, because
it is very unlikely that the diagnosis would be missed
by clinical examination alone. In contrast, diagnosis or
exclusion of sex chromosome aneuploidies by clinical
examination of the neonate is not reliable; consequently,
there are real concerns of high risk of bias in relation to
both the reference standard and flow and timing in the
studies that did not rely entirely on karyotyping.

Clinical implications

Trisomy 21

There is clear evidence that in singleton pregnancies
the performance of screening for trisomy 21 by cfDNA
testing is superior to that of all other methods combining
maternal age, first- or second-trimester ultrasound
findings and first- or second-trimester serum biochemical
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analysis. Additionally, the test can be carried out at 10–11
weeks’ gestation, with the advantage of providing early
reassurance for the majority of parents that their fetus is
unlikely to be trisomic and, for the few with an affected
fetus, the parents have the option of an earlier and safer
termination of pregnancy31,75.

There are essentially two options in the clinical
implementation of cfDNA analysis of maternal blood
in screening for trisomy 21: first, routine screening of
the whole population, and second, contingent screening
based on the results of first-line screening by another
method, preferably the first-trimester combined test. The
two major limitations of cfDNA testing as a potential
method for universal screening are the high cost of the
test and the rate of failure to provide a result. Both of these
problems can be overcome by the use of cfDNA testing
contingent on the results of the first-trimester combined
test1,85–87. Contingent screening would lead to a very high
DR and very low invasive testing rate at a considerably
lower cost than compared with carrying out cfDNA
testing as a first-line method of screening. In cases of failed
cfDNA test, pregnant women can rely on the results of
the combined test in deciding in favor or against invasive
testing. This strategy would also retain the advantages
of first-trimester testing by ultrasound and biochemistry,
including accurate pregnancy dating, early detection of
many major fetal defects and prediction, with the potential
of prevention, of a wide range of pregnancy complications,
including pre-eclampsia and preterm birth88.

Trisomies 18 and 13

There are no advocates of screening for fetal trisomies 18
and 13 independently from screening for trisomy 21. In

traditional testing, detection of these lethal trisomies has
been considered to be the mere beneficial consequence
of screening for trisomy 21. Large studies utilizing the
first-trimester combined test have reported that use of risk
algorithms for each of the three trisomies results in DRs
of about 90% for trisomy 21 and 95% for trisomies 18
and 13, with an increase in FPR of only 0.1% above the
FPR of about 4% in screening for trisomy 21 alone89–91.

Data from this meta-analysis of studies on cfDNA
testing suggest that the performance of screening for
trisomies 18 and 13 may be worse than that of the
combined test. Although the reported DR of the two tests
is similar, it is likely that the true DR of the cfDNA test
will be lower if the cases in which the test fails to give a
result are included. Furthermore, the differential increase
in FPR by including these trisomies in a screening strategy
aimed primarily at detecting trisomy 21 is considerably
higher with cfDNA testing than with the combined test.

Sex chromosome aneuploidies

Conventional prenatal screening has never sought directly
to uncover fetal sex chromosome aneuploidies, and their
detection was coincidental in pregnancies undergoing
invasive testing following screening for trisomy 2192,93.
The introduction of cfDNA analysis of maternal blood
has now made it possible to screen not only for trisomies
21, 18 and 13, but also potentially for other chromosomal
abnormalities, including sex chromosome aneuploidies.
Cases of sex chromosome aneuploidy are generally
mild, without physical or intellectual disability. The
only exception is the lethal type of monosomy X which
presents with a very large nuchal translucency during
the first trimester or cystic hygroma/hydrops during
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the second trimester; in such cases the investigation of
choice would be invasive testing for fetal karyotype
evaluation, including subchromosomal analysis with
microarray, rather than cfDNA testing for assessment of
risk for 45,X.

It may be inappropriate to offer pregnant women
screening for sex chromosome aneuploidies by cfDNA
testing just because it is feasible. There are several reasons
for this: first, the phenotype of these aneuploidies is
generally mild; second, the test has a high failure rate and
relatively low DR and high FPR; third, fetal mosaicism
accounts for up to 50% of these aneuploidies; and fourth,
the test may uncover a previously unknown maternal
aneuploidy; up to 90% of women with 47,XXX are not
aware that they have a third X chromosome94–96.

Conclusions

Traditionally, screening for fetal aneuploidies has focused
on trisomy 21 and, with each new method of screen-
ing introduced over the last four decades, the two
objectives have been to increase the DR and decrease
the rate of unnecessary invasive tests. There is now
conclusive evidence that cfDNA analysis of mater-
nal blood in screening for trisomy 21 in singleton
pregnancies is superior to all previous methods in
achieving both of these objectives. Performance of
screening in twins by cfDNA testing requires further
evaluation.

The DR of screening by cfDNA testing for trisomies
18 and 13 and sex chromosome aneuploidies is lower
than that for trisomy 21. Indeed, the reported DR
for these aneuploidies in this meta-analysis is likely
to have been overestimated; trisomies 18 and 13 are
over-represented in the cases of a failed result and sex
chromosome aneuploidies are ascertained inadequately
in some of the studies. Additionally, expansion of
the indications of cfDNA testing to include trisomies
18 and 13 and sex chromosome aneuploidies would
increase the cumulative FPR eight-fold, from 0.09%
to 0.72%.
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Schulze B, Raabe-Meyer G, Hempel M, Schelling M, Oster-
mayer E, Langer-Freitag S, Burkhardt T, Zimmermann R,
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